#### **Announcements**

- Homework 3: Games
  - Has been released, due Monday 9/17 at 11:59pm
    - Electronic HW3
    - Written HW3
    - Self-assessment HW2
- Project 2: Games
  - Released, due Friday 9/21 at 4:00pm
- Homework Policy Update
  - Drop 2 lowest

## **Uncertain Outcomes**



# CS 188: Artificial Intelligence

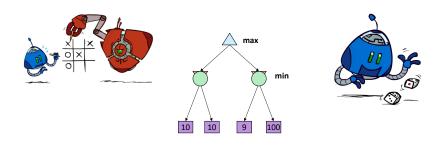
Uncertainty and Utilities

Instructors: Pieter Abbeel & Dan Klein

University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

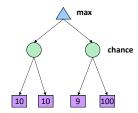
# Worst-Case vs. Average Case



Idea: Uncertain outcomes controlled by chance, not an adversary!

# **Expectimax Search**

- Why wouldn't we know what the result of an action will be?
  - Explicit randomness: rolling dice
  - Unpredictable opponents: the ghosts respond randomly
  - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
  - Max nodes as in minimax search
  - Chance nodes are like min nodes but the outcome is uncertain
  - Calculate their expected utilities
  - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes



[Demo: min vs exp (L7D1,2)]

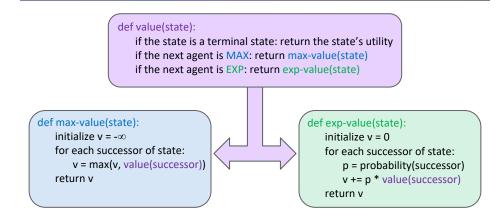
## Video of Demo Minimax vs Expectimax (Exp)



## Video of Demo Minimax vs Expectimax (Min)

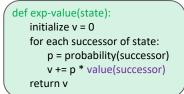


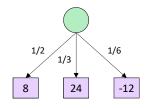
## **Expectimax Pseudocode**



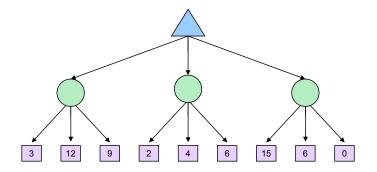
# Expectimax Pseudocode

# **Expectimax Example**

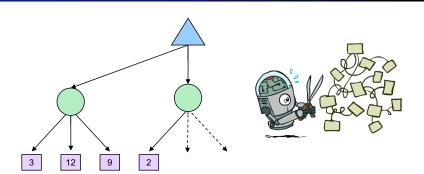




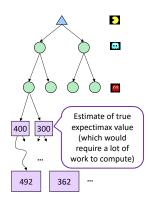
v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10



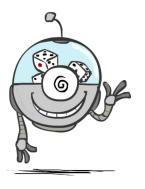
# **Expectimax Pruning?**



# Depth-Limited Expectimax



#### **Probabilities**



#### Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
  - Random variable: T = whether there's traffic
  - Outcomes: T in {none, light, heavy}
  - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability (more later):
  - Probabilities are always non-negative
  - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
  - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
  - We'll talk about methods for reasoning and updating probabilities later



0.25



0.50



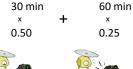
0.25

## **Reminder: Expectations**

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?







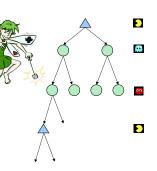






#### What Probabilities to Use?

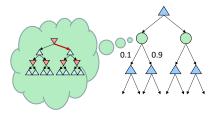
- In expectimax search, we have a probabilistic  $\eta$ of how the opponent (or environment) will beh
  - Model could be a simple uniform distribution (roll a die)
  - Model could be sophisticated and require a great deal of We have a chance node for any outcome out of our control
  - opponent or environment The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes



Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

## **Quiz: Informed Probabilities**

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?



#### Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

# **Modeling Assumptions**



# The Dangers of Optimism and Pessimism

# Dangerous Optimism Assuming chance when the world is adversarial



# Dangerous Pessimism Assuming the worst case when it's not likely





## Assumptions vs. Reality



|                      | Adversarial Ghost | Random Ghost |
|----------------------|-------------------|--------------|
| Minimax<br>Pacman    |                   |              |
| Expectimax<br>Pacman |                   |              |

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

# Assumptions vs. Reality

## Video of Demo World Assumptions Random Ghost – Expectimax Pacman



|            | Adversarial Ghost | Random Ghost    |
|------------|-------------------|-----------------|
| Minimax    | Won 5/5           | Won 5/5         |
| Pacman     | Avg. Score: 483   | Avg. Score: 493 |
| Expectimax | Won 1/5           | Won 5/5         |
| Pacman     | Avg. Score: -303  | Avg. Score: 503 |

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]





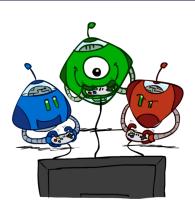
Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman





# Other Game Types



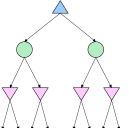


# Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
  - Environment is an extra "random agent" player that moves after each min/max agent
  - Each node computes the appropriate combination of its children









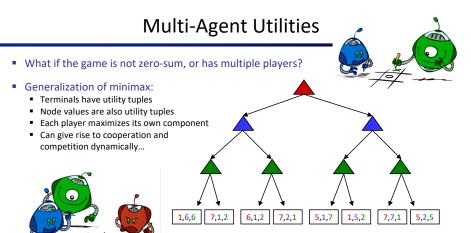




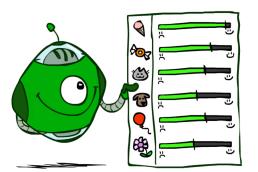
# Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
  - Backgammon ≈ 20 legal moves
  - Depth 2 =  $20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
  - So usefulness of search is diminished
  - So limiting depth is less damaging
  - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1<sup>st</sup> Al world champion in any game!





#### **Utilities**



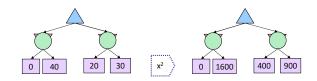
# **Maximum Expected Utility**

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
  - A rational agent should chose the action that maximizes its expected utility, given its knowledge

#### • Questions:

- Where do utilities come from?
- How do we know such utilities even exist?
- How do we know that averaging even makes sense?
- What if our behavior (preferences) can't be described by utilities?

## What Utilities to Use?



- For worst-case minimax reasoning, terminal function scale doesn't matter
  - We just want better states to have higher evaluations (get the ordering right)
  - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

#### **Utilities**

#### **Utilities: Uncertain Outcomes**

Get Double

Oops

Whew!

Getting ice cream

Get Single

 Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences



- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any "rational" preferences can be summarized as a utility function



- Why don't we let agents pick utilities?
- Why don't we prescribe behaviors?



## **Preferences**

An agent must have preferences among:

■ Prizes: A, B, etc.

Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p), B]$$

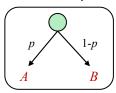
Notation:

• Preference:  $A \succ B$ • Indifference:  $A \sim B$ 





#### A Prize A Lottery



# Rationality

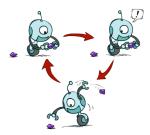


#### **Rational Preferences**

• We want some constraints on preferences before we call them rational, such as:

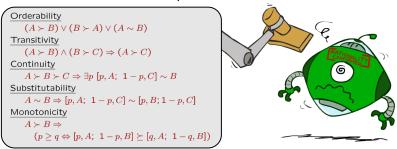
Axiom of Transitivity: 
$$(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$$

- For example: an agent with intransitive preferences can be induced to give away all of its money
  - If B > C, then an agent with C would pay (say) 1 cent to get B
  - If A > B, then an agent with B would pay (say) 1 cent to get A
  - If C > A, then an agent with A would pay (say) 1 cent to get C



#### **Rational Preferences**

#### The Axioms of Rationality

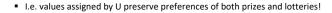


Theorem: Rational preferences imply behavior describable as maximization of expected utility

## **MEU Principle**

- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
  - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

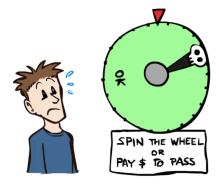
$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$
  
 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$ 





- Maximum expected utility (MEU) principle:
  - Choose the action that maximizes expected utility
  - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
  - E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

#### **Human Utilities**



## **Utility Scales**

- Normalized utilities: u<sub>x</sub> = 1.0, u<sub>y</sub> = 0.0
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where  $k_1 > 0$ 

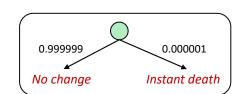
 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes



#### **Human Utilities**

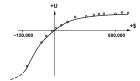
- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
  - Compare a prize A to a standard lottery L<sub>n</sub> between
    - "best possible prize" u<sub>+</sub> with probability p
    - "worst possible catastrophe" u\_ with probability 1-p
  - Adjust lottery probability p until indifference: A ~ L<sub>n</sub>
  - Resulting p is a utility in [0,1]





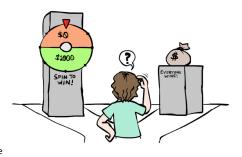
## Money

- Money <u>does not</u> behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
  - The expected monetary value EMV(L) is p\*X + (1-p)\*Y
  - U(L) = p\*U(\$X) + (1-p)\*U(\$Y)
  - Typically, U(L) < U(EMV(L))
  - In this sense, people are risk-averse
  - When deep in debt, people are risk-prone



## Example: Insurance

- Consider the lottery [0.5, \$1000; 0.5, \$0]
  - What is its expected monetary value? (\$500)
  - What is its certainty equivalent?
    - Monetary value acceptable in lieu of lottery
    - \$400 for most people
  - Difference of \$100 is the insurance premium
    - There's an insurance industry because people will pay to reduce their risk
    - If everyone were risk-neutral, no insurance needed!
  - It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)



# Example: Human Rationality?

#### ■ Famous example of Allais (1953)

• A: [0.8, \$4k; 0.2, \$0] (= B: [1.0, \$3k; 0.0, \$0]

C: [0.2, \$4k; 0.8, \$0]D: [0.25, \$3k; 0.75, \$0]

#### ■ Most people prefer B > A, C > D

But if U(\$0) = 0, then

■ B > A ⇒ U(\$3k) > 0.8 U(\$4k)

■ C > D ⇒ 0.8 U(\$4k) > U(\$3k)



Next Time: MDPs!