Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s'| s, a) \)
 - Also called the model or the dynamics
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Video of Demo Gridworld Manual Intro
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state:
 \[P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t) \]

- This is just like search, where the successor function could only depend on the current state (not the history).

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

- For MDPs, we want an optimal policy \(\pi^*: S \rightarrow A \):
 - A policy \(\pi \) gives an action for each state.
 - An optimal policy is one that maximizes expected utility if followed.
 - An explicit policy defines a reflex agent.

- Expectimax didn’t compute entire policies:
 - It computed the action for a single state only.

Optimal policy when \(R(s, a, s') = -0.03 \) for all non-terminals \(s \).
Optimal Policies

Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree
Each MDP state projects an expectimax-like search tree

(s, a) is a \textit{q-state}

\textit{(s, a, s') called a transition}

\begin{align*}
 T(s, a, s') &= P(s' | s, a) \\
 R(s, a, s')
\end{align*}

Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)
- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)

Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

\[
\begin{align*}
1 & \quad \text{Worth Now} \\
\gamma & \quad \text{Worth Next Step} \\
\gamma^2 & \quad \text{Worth In Two Steps}
\end{align*}
\]
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3$
 - $U([1,2,3]) < U([3,2,1])$

Stationary Preferences

- **Theorem:** if we assume stationary preferences:

 $[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]
 \iff
 [r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$

- **Then:** there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$
Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?
 - 10 1

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?
 - 10 1

- Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$
 - $U([r_0, \ldots, r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)$
 - Smaller γ means smaller “horizon” – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' \mid s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:
 \[
 V^*(s) = \max_a Q^*(s, a) \\
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\
 V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
Racing Search Tree

- We’re doing way too much work with expectimax!

- **Problem: States are repeated**
 - Idea: Only compute needed quantities once

- **Problem: Tree goes on forever**
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$

Time-Limited Values

- **Key idea: time-limited values**

- **Define** $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
\(k=0 \)

\[
\begin{array}{cccc}
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & \text{[Gray]} & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

\(k=1 \)

\[
\begin{array}{cccc}
0.00 & 0.00 & 0.00 & 1.00 \\
0.00 & \text{[Gray]} & \text{-0.00} & \text{-1.00} \\
0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=2$

Values after 2 iterations:

- Top-left cell: 0.00
- Top-middle cell: 0.00
- Top-right cell: 0.72
- Bottom-right cell: 1.00
- Bottom-middle cell: 0.00
- Bottom-left cell: 0.00

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=3$

Values after 3 iterations:

- Top-left cell: 0.00
- Top-middle cell: 0.52
- Top-right cell: 0.78
- Bottom-right cell: 1.00
- Bottom-middle cell: 0.43
- Bottom-left cell: 0.00

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 6 ITERATIONS

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 7 ITERATIONS
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration

<table>
<thead>
<tr>
<th>V_0</th>
<th>V_1</th>
<th>V_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]

Assume no discount!
Convergence*

- How do we know the V_k vectors are going to converge?

- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

Next Time: Policy-Based Methods