CS 188: Artificial Intelligence

Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Grid World

Non-Deterministic Search

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East
= |f there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes Video of Demo Gridworld Manual Intro

= An MDP is defined by:

= Asetofstatesse S

= Asetof actionsa € A

= Atransition function T(s, a, s’)
= Probability that a from s leadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

= Astart state

= Maybe a terminal state

= MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We’'ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs? Policies

= In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

= “Markov” generally means that given the present state, the
future and the past are independent

=/

[T /-]

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

= For MDPs, we want an optimal policy t*: S > A
= Apolicy & gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

An explicit policy defines a reflex agent

P(St+1 = 5'|St =54, A = a4, 81 =541, A—1,...50 = 50)

Andrey Markov
P(St+1 = 3/|St =54, A = at) (1856-1922)

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

= This is just like search, where the successor function could only * Expectimax didn’t compute entire policies
depend on the current state (not the history) = |t computed the action for a single state only

Optimal Policies

Example: Racing

—~af ~p g —~af -
R(s) =-0.01 R(s) =-0.03
| | | |

L]
i
]
Y
-0

R(s) =-0.4 R(s) =-2.0

Example: Racing

Racing Search Tree

= Arobot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward

Overheated

&

&

&

T

XY

o

MDP Search Trees Utilities of Sequences

= Each MDP state projects an expectimax-like search tree

—

g-state

(s,a)isa <‘\
(s,a,s”) called a transition

“sas \7 T(s:as') = P(s'|s,a)

R(s,a,s") é\

Utilities of Sequences Discounting

» What preferences should an agent have over reward sequences? = It's reasonable to maximize the sum of rewards
= |t's also reasonable to prefer rewards now to rewards later

= Moreorless? [1,2,2] or [2,3,4] = One solution: values of rewards decay exponentially

N .
= Noworlater? [0,0,1] or [1,0,0] @ v{\ v/x !
C)Z 1 ~ /72

Worth Now Worth Next Step Worth In Two Steps

Discounting Stationary Preferences

. . . .)
= How to discount? Theorem: if we assume stationary preferences: ®_* @
= Each time we descend a level, we Xﬁ{ o .
multiply in the discount once N 1 [al, ag, .. } - [bl, bz, ..] @ ?

¢) 4

= Why discount?
[r,a1,a9,...] > [r,b1,ba,..]

= Sooner rewards probably do have oy o
higher utility than later rewards P)/
= Also helps our algorithms converge -Vl

= Then: there are only two ways to define utilities

= Example: discount of 0.5 ey N . -
* U([1,2,3]) = 1¥1 + 0.5%2 + 0.25*3 ’)/2 * Additive utility: U([ro,r1,72,...]) =ro+r1+r2+ -
* U([1,2,3) < U([3,2,1]) - 2s = Discounted utility: U([rg,71,790,...]) =19 4+ yr1 +~2ro---
Quiz: Discounting Infinite Utilities?!
Given: ‘ 10 I | I | 1 ‘ = Problem: What if the game lasts forever? Do we get infinite rewards?

a b ¢ d e = Solutions:

= Actions: East, West, and Exit (only available in exit states a, e) = Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Transitions: deterministic

Quiz 1: For y = 1, what is the optimal policy? ‘ 10 | | | | 1 ‘ = Discounting:use 0<y<1
Ulror-.roc]) = 3° ~tre < Rmax/(1 -
Quiz 2: For y=0.1, what is the optimal policy? ‘ 10 | | | | 1 ‘ (o, orech) tgo’y " /=)

= Smaller y means smaller “horizon” — shorter term focus

Quiz 3: For which y are West and East equally good when in state d? = Absorbing state: guarantee that for every policy, a terminal state will eventually

be reached (like “overheated” for racing)

Recap: Defining MDPs Solving MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount v) 838

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Optimal Quantities Snapshot of Demo — Gridworld V Values

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sisa
acting optimally state
a7 (s,a)isa
= The value (utility) of a g-state (s,a): g-state
Q’(s,a) = expected utility starting out e -
having taken action a from state s and (tij,ii)uina

(thereafter) acting optimally

= The optimal policy:

7*(s) = optimal action from state s

VALUES AFTER 100 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld Q Values Values of States

Gridworld Display

o
-

v v v v Vi(s) = ml?xQ*(s,a) »
#&4#&4»&4#&4 | Q*(s,a) = Z’< a,5') [R(s,a,5') +7V*(s)]

Vi(s) = mngT(s,a, ") {R(s,a,s’) —{—’yV*(s')]

= Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards

Q-VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

Racing Search Tree Racing Search Tree

=

&S &S &

¢ RF RL Y AAAAANAS

. i & g

TR PENNT CR T FEW T

Racing Search Tree

Time-Limited Values

= We're doing way too much
work with expectimax!

= Problem: States are repeated
= |dea: Only compute needed

Qi

&

&

ALY

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends

in k more time steps
= Equivalently, it's what a depth-k expectimax would give from s

[Demo — time-limited values (L8D6)]

quantities once & & & &S e & a &
= Problem: Tree goes on forever 23 (; 2\ 2} (; 2} (;
= Idea: Do a depth-limited PO e b e NN
computation, but with increasing A A
depths until change is small ﬂﬂﬁ m&ﬁ ﬁﬁﬁ ﬁﬂﬂﬂﬁ
= Note: deep parts of the tree
eventually don’t matter ify <1 PR TR A \\‘Hl\“w”l TR
VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward = 0

VALUES AFTER 2 ITERATIONS Noise = 0.2 VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9 Discount = 0.9

Living reward = 0 Living reward = 0

VALUES AFTER 4 ITERATIONS Noise = 0.2 VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9 Discount = 0.9

Living reward = 0 Living reward = 0

k=6 k=7

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2 VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9 Discount = 0.9

Living reward = 0 Living reward = 0

k=8

Gridworld Display.

VALUES AFTER 8 ITERATIONS Noise =0.2 VALUES AFTER 9 ITERATIONS Noise =0.2
Discount = 0.9 Discount = 0.9

Living reward = 0 Living reward = 0

k=10 k=11

Gridworld Display Gridworld Display

VALUES AFTER ITERATIONS Noise =0.2 VALUES AFTER 11 ITERATIONS Noise =0.2
Discount = 0.9 Discount = 0.9

Living reward = 0 Living reward = 0

k=12 k=100

Gridworld Display Gridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2 VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9 Discount = 0.9

Living reward = 0 Living reward = 0

Computing Time-Limited Values

Value Iteration

@) Vi(e) ‘/4(-)]

Vi(@)

A, v
Vo(“‘)] <& [TR

A 4

T

T

¥ v VYWY
TR

Value Iteration

Example: Value Iteration

Start with V(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vi1(s) ¢ max Y T(s,a,) [R(s,a,5) + 7 Vi ()]

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values

= Basic idea: approximations get refined towards optimal values

= Policy may converge long before values do

W

4

a5 & &
3.5 2.5 0
2 1 0
0 0 0

Slow

Overheated

Assume no discount!

Vit 1() & max 3 T(s,a,5') [R(s,0,5') + 7 Vi(s")]

Convergence* Next Time: Policy-Based Methods

How do we know the V, vectors are going to converge?

Vk S Vk 1\S
Case 1: If the tree has maximum depth M, then V,, holds () + ()
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,,, has actual
rewards while V| has zeros

= That last layer is at best all Ry,

= Itis at worst Ry, / \ /
= But everything is discounted by y* that far out
= SoV,andV,,, are at most y* max|R| different

= So as k increases, the values converge

