CS 188: Artificial Intelligence Non-Deterministic Search

Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Grid World Grid World Actions

Deterministic Grid World Stochastic Grid World
= A maze-like problem

= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East
= If there is a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

= Goal: maximize sum of rewards

Markov Decision Processes Video of Demo Gridworld Manual Intro

= An MDP is defined by:

* AsetofstatesseS

= Asetofactionsa e A

= Atransition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s'| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

® Astart state

® Maybe a terminal state

= MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

Policies

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(5z+1 = S’|S: =51, Ay = ay, S = s1-1, Ai—1,...50 = Su)

Andrey Markov
(1856-1922)

P(Sp41 = 'Sy = 8¢, Ay = ay)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Optimal Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy n*: S - A
= Apolicy 7 gives an action for each state

An optimal policy is one that maximizes
expected utility if followed

An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
® It computed the action for a single state only

Example: Racing

A

g

- | - | -

[}
—-|A

R(s) =-0.01 R(s) =-0.03

||| ||
A (W |=:] A L=
R(s) = -0.4 R(s) =-2.0

Example: Racing

Racing Search Tree

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Slow

10 +1

Overheated

&

MDP Search Trees

Utilities of Sequences

= Each MDP state projects an expectimax-like search tree

(s,a)isa
g-state
(s,a,s") called a transition

T(s,as’)=P(s’[|s,a)
R(s,as’) ‘\I\{

Utilities of Sequences

Discounting

= What preferences should an agent have over reward sequences?

= |t's reasonable to maximize the sum of rewards

= |t's also reasonable to prefer rewards now to rewards later

= Moreorless? [1,2,2] or [2,3,4] = One solution: values of rewards decay exponentially
X/L{ ./
= Now orlater? [0,0,1] or [1,0,0] N ~
V. a 9N
1 gl v
Worth Now Worth Next Step Worth In Two Steps
Discounting Stationary Preferences
* How to discount? = Theorem: if we assume stationary preferences: » @
= Each time we descend a level, we NV‘{ 7 h
multiply in the discount once \ 1 [al, az, .. } - [bl, bg, ..] Q

= Why discount?

= Sooner rewards probably do have , o
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5 ,
= U([1,2,3]) = 1%1 + 0.5%2 + 0.25*3 2)
= U(1,2,3]) < U([3,2,1) - 2.

g
¢ v

[rya1,a2,...] = [r,b1,be,...]

= Then: there are only two ways to define utilities
D=ro+tritrat--

= Discounted utility: U([rg,71,72,...]) =rg+yr1 +~%ro---

= Additive utility: ~ U([rg, 71,72, ..

Quiz: Discounting

Infinite Utilities?!

= Given: --

a b c d e
= Actions: East, West, and Exit (only available in exit states a, e)
= Transitions: deterministic

= Quiz 1: For y = 1, what is the optimal policy?

o] [[[a)
o] [[1)

= Quiz 3: For which y are West and East equally good when in state d?

= Quiz 2: Fory = 0.1, what is the optimal policy?

Recap: Defining MDPs

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1
oo

U([ro,---roc]) = Z ,71” < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Solving MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Optimal Quantities

Snapshot of Demo — Gridworld V Values

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sisa
acting optimally state
a7 (s,a)isa
= The value (utility) of a g-state (s,a): . g-state
Q’(s,a) = expected utility starting out N
having taken action a from state s and (;:ril_)ﬂina

(thereafter) acting optimally

= The optimal policy:
n*(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

d Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Values of States

NNV
6N, N

S

Q-VALUES AFTER 100 ITERATIONS

Racing Search Tree

= Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value:

V*(s) = max Q" (s, a)

Q*(s,a) = Y. T(s,a,5") :]{(\u..ﬁ/) +<\'*(.\’):

Noise = 0.2 V*(s) = maaxz T(s,a,s") {R(s, a,s) +~ V*(s/)]

Discount = 0.9
Living reward =0

Racing Search Tree

>

S &S

[

SepE Y

Racing Search Tree

e

o
- TATAR AT
nOg 00000

-~ i R

VUM EOOAUTIBE LT LR TR

‘ém

Time-Limited Values

= We're doing way too much
work with expectimax!

= Problem: States are repeated
= |dea: Only compute needed
quantities once

g

= Problem: Tree goes on forever
= |dea: Do a depth-limited (N
computation, but with increasing
depths until change is small
= Note: deep parts of the tree
eventually don’t matter if y <1

IR

5=

&
Q@

P
A0 ARG
i

POERE ORI TN TN

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
> in k more time steps

m = Equivalently, it's what a depth-k expectimax would give from s

i = A
§ sVt

H b

;}@

I

é

[Demo — time-limited values (L8D6)]

k=0 k=1

VALUES AFTER O ITERATIONS Noise =0.2 VALUES AFTER 1 ITERATIONS Noise =0.2
Discount = 0.9 Discount = 0.9

Living reward =0 Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2 VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9 Discount =0.9

Living reward =0 Living reward =0

VALUES AFTER 4 ITERATIONS Noise =0.2 VALUES AFTER 5 ITERATIONS Noise =0.2
Discount = 0.9 Discount = 0.9

Living reward =0 Living reward =0

k=6 k=7

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise =0.2 VALUES AFTER 7 ITERATIONS Noise =0.2
Discount =0.9 Discount =0.9

Living reward =0 Living reward =0

VALUES AFTER 8 ITERATIONS Noise =0.2 VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9 Discount =0.9

Living reward =0 Living reward =0

VALUES AFTER 10 ITERATIONS Noise = 0.2 VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9 Discount =0.9

Living reward =0 Living reward =0

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Computing Time-Limited Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Value lteration

[w@» vi(@) w<~>] &

[vm») V(@) v3<->] <&

[v2 ®) Vi(e) V2<->]

[m &) Vi(e) %0-)]{::] PUE LU i el
IR A

[Vn @) Vo(e) Vn<')] <ZI T T TR T T TV TR

Value lteration

Example: Value Iteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vie1(s) & max Y T(s,a,) [R(s,a,8) +9 V(o)
s
Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

& e &

Overheated

Assume no discount!

Vo [0 0 0] Vi1 (s) € max ¥ T(s,a.8') [R(s,a,8) + 7 Vi)

Convergence* Next Time: Policy-Based Methods

How do we know the V, vectors are going to converge?

. Vi(s) Vita(s)
Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

Sketch: For any state V| and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

That last layer is at best all Ry,

Itis at worst Ry, / \ /
But everything is discounted by y* that far out
So V, and V,,, are at most y* max|R| different

So as k increases, the values converge

