Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards
Recap: MDPs

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)
 - Start state s_0

- **Quantities:**
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

- **The value (utility) of a state s:**
 $V^*(s) =$ expected utility starting in s and acting optimally

- **The value (utility) of a q-state (s,a):**
 $Q^*(s,a) =$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- **The optimal policy:**
 $\pi^*(s) =$ optimal action from state s

[Demo: gridworld values (L9D1)]
Gridworld Values V^*

VALUES AFTER 100 ITERATIONS

Gridworld: Q^*

Q-VALUES AFTER 100 ITERATIONS
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal

Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - ... though the \(V_k \) vectors are also interpretable as time-limited values

Convergence*

- How do we know the \(V_k \) vectors are going to converge?

- Case 1: If the tree has maximum depth \(M \), then \(V_M \) holds the actual untruncated values

- Case 2: If the discount is less than 1
 - Sketch: For any state \(V_k \) and \(V_{k+1} \) can be viewed as depth \(k+1 \) expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, \(V_{k+1} \) has actual rewards while \(V_k \) has zeros
 - That last layer is at best all \(R_{\text{MAX}} \)
 - It is at worst \(R_{\text{MIN}} \)
 - But everything is discounted by \(\gamma^k \) that far out
 - So \(V_k \) and \(V_{k+1} \) are at most \(\gamma^k \max |R| \) different
 - So as \(k \) increases, the values converge
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy \(\pi(s) \), then the tree would be simpler – only one action per state
 - ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state \(s \) under a fixed (generally non-optimal) policy
- Define the utility of a state \(s \), under a fixed policy \(\pi \):
 \[V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]
- Recursive relation (one-step look-ahead / Bellman equation):
 \[
 V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')]
 \]
Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy \(\pi \)?

- **Idea 1:** Turn recursive Bellman equations into updates (like value iteration)
 \[
 V^\pi_0(s) = 0 \\
 V^\pi_{k+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi_k(s')]
 \]

 - Efficiency: \(O(S^2) \) per iteration

- **Idea 2:** Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction
Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
$$

- This is called **policy extraction**, since it gets the policy implied by the values.

Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$
\pi^*(s) = \arg \max_a Q^*(s, a)
$$

- Important lesson: actions are easier to select from q-values than values!
Policy Iteration

Problems with Value Iteration

- Value iteration repeats the Bellman updates:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration
- Problem 2: The “max” at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
$k=0$

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=2$

![Gridworld Display](image)

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=3$

![Gridworld Display](image)

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k=6 \)

\[
\begin{array}{cccc}
0.59 & 0.73 & 0.85 & 1.00 \\
0.41 & & 0.57 & -1.00 \\
0.21 & 0.31 & 0.43 & 0.19 \\
\end{array}
\]

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

\(k=7 \)

\[
\begin{array}{cccc}
0.62 & 0.74 & 0.85 & 1.00 \\
0.50 & & 0.57 & -1.00 \\
0.34 & 0.36 & 0.45 & 0.24 \\
\end{array}
\]

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 10 ITERATIONS

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 11 ITERATIONS
$k=12$

Noise = 0.2
Discount = 0.9
Living reward = 0

$\begin{array}{cccc}
0.64 & 0.74 & 0.85 & 1.00 \\
0.57 & 0.57 & \text{#} & -1.00 \\
0.49 & 0.42 & 0.47 & 0.28 \\
\end{array}$

VALUES AFTER 12 ITERATIONS

$k=100$

Noise = 0.2
Discount = 0.9
Living reward = 0

$\begin{array}{cccc}
0.64 & 0.74 & 0.85 & 1.00 \\
0.57 & 0.57 & \text{#} & -1.00 \\
0.49 & 0.43 & 0.48 & 0.28 \\
\end{array}$

VALUES AFTER 100 ITERATIONS
Policy Iteration

- **Alternative approach for optimal values:**
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- **This is policy iteration**
 - It’s still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- **Evaluation:** For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 $$ V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right] $$

- **Improvement:** For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 $$ \pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right] $$
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to….
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
Double Bandits

- Actions: Blue, Red
- States: Win, Lose

Double-Bandit MDP

No discount
100 time steps
Both states have the same value
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>150</td>
</tr>
<tr>
<td>Play Blue</td>
<td>100</td>
</tr>
</tbody>
</table>

No discount
100 time steps
Both states have the same value

Let’s Play!

2 2 0 2 2

2 2 0 0 0
Online Planning

- Rules changed! Red’s win chance is different.

Let’s Play!
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!