Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀
- Quantities:
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]
- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]
- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
The Bellman Equations

Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[
V^*(s) = \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

\[
V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over.
Value Iteration

- Bellman equations characterize the optimal values:
 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - ... though the \(V_k \) vectors are also interpretable as time-limited values

Convergence*

- How do we know the \(V_k \) vectors are going to converge?

- Case 1: If the tree has maximum depth \(M \), then \(V_M \) holds the actual untruncated values

- Case 2: If the discount is less than 1
 - Sketch: For any state \(V_k \) and \(V_{k+1} \) can be viewed as depth \(k+1 \) expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, \(V_{k+1} \) has actual rewards while \(V_k \) has zeros
 - That last layer is at best all \(R_{\text{MAX}} \)
 - It is at worst \(R_{\text{MIN}} \)
 - But everything is discounted by \(\gamma^k \) that far out
 - So \(V_k \) and \(V_{k+1} \) are at most \(\gamma^k \max |R| \) different
 - So as \(k \) increases, the values converge
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state.
 - ... though the tree’s value would depend on which policy we fixed.

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy.
- Define the utility of a state s, under a fixed policy π:

 \[V(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):

 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Example: Policy Evaluation

- **Always Go Right**
- **Always Go Forward**
Policy Evaluation

- How do we calculate the V’s for a fixed policy \(\pi \)?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)
 \[
 V_0^\pi (s) = 0 \\
 V_{k+1}^\pi (s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi (s')]
 \]
- Efficiency: \(O(S^2) \) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let’s imagine we have the optimal values \(V^*(s) \)
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)
 \[
 \pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
 \]
- This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!
 \[
 \pi^*(s) = \arg \max_a Q^*(s, a)
 \]
- Important lesson: actions are easier to select from q-values than values!
Policy Iteration

Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration
- Problem 2: The “max” at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L902)]

k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=2$

VALUES AFTER 2 ITERATIONS

\[
\begin{array}{cccc}
0.00 & 0.00 & 0.72 & 1.00 \\
\uparrow & & \uparrow & \\
0.00 & 0.00 & -1.00 & \\
\uparrow & \uparrow & \uparrow & \uparrow \\
0.00 & 0.00 & 0.00 & 0.00
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=3$

VALUES AFTER 3 ITERATIONS

\[
\begin{array}{cccc}
0.00 & 0.52 & 0.78 & 1.00 \\
\uparrow & \uparrow & & \\
0.00 & 0.43 & -1.00 & \\
\uparrow & \uparrow & \uparrow & \uparrow \\
0.00 & 0.00 & 0.00 & 0.00
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=4$

VALUES AFTER 4 ITERATIONS

\[
\begin{array}{cccc}
0.37 & 0.66 & 0.83 & 1.00 \\
\uparrow & & \uparrow & \\
0.00 & 0.51 & -1.00 & \\
\uparrow & \uparrow & \uparrow & \uparrow \\
0.00 & 0.00 & 0.31 & 0.00
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=5$

VALUES AFTER 5 ITERATIONS

\[
\begin{array}{cccc}
0.51 & 0.72 & 0.84 & 1.00 \\
\uparrow & \uparrow & \uparrow & \\
0.27 & 0.55 & -1.00 & \\
\uparrow & \uparrow & \uparrow & \uparrow \\
0.00 & 0.22 & 0.37 & 0.13
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0
Initial conditions for different values of k:

- **$k=10$**
 - Noise = 0.2
 - Discount = 0.9
 - Living reward = 0

- **$k=11$**
 - Noise = 0.2
 - Discount = 0.9
 - Living reward = 0

- **$k=12$**
 - Noise = 0.2
 - Discount = 0.9
 - Living reward = 0

- **$k=100$**
 - Noise = 0.2
 - Discount = 0.9
 - Living reward = 0

Values after iterations:

- **VALUES AFTER 10 ITERATIONS**
 - $k=10$
 - Values displayed in the grid.

- **VALUES AFTER 11 ITERATIONS**
 - $k=11$
 - Values displayed in the grid.

- **VALUES AFTER 12 ITERATIONS**
 - $k=12$
 - Values displayed in the grid.

- **VALUES AFTER 100 ITERATIONS**
 - $k=100$
 - Values displayed in the grid.
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
Double Bandits

- Actions: Blue, Red
- States: Win, Lose

Double-Bandit MDP

<table>
<thead>
<tr>
<th>Action</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1.0</td>
</tr>
<tr>
<td>Blue</td>
<td>0.75</td>
</tr>
</tbody>
</table>

No discount
100 time steps
Both states have the same value

Offline Planning

- Solving MDPs is offline planning
- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

Value

<table>
<thead>
<tr>
<th>Action</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>150</td>
</tr>
<tr>
<td>Play Blue</td>
<td>100</td>
</tr>
</tbody>
</table>

Let’s Play!

<table>
<thead>
<tr>
<th>Action</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>$2</td>
</tr>
<tr>
<td>Blue</td>
<td>$0</td>
</tr>
</tbody>
</table>

No discount
100 time steps
Both states have the same value
Online Planning

- Rules changed! Red’s win chance is different.

Let’s Play!

What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!