CS 188: Artificial Intelligence

Markov Decision Processes II

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀

• Quantities:

- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

[Demo: gridworld values (L9D1)]

Gridworld Values V*

Gridworld: Q*

The Bellman Equations

How to be optimal: Step 1: Take correct first action Step 2: Keep being optimal

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$\begin{split} &V^*(s) = \max_{a} Q^*(s,a) \\ &Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \\ &V^*(s) = \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \end{split}$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

• Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual
 - rewards while V_k has zeros

 That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - \bullet So V_k and V_{k+1} are at most $\gamma^k \, \text{max} \, | \, R \, | \, \text{different}$
 - So as k increases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - $\,\blacksquare\,\,$... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

s, π(s),s'

Example: Policy Evaluation

Always Go Right			
-10.00	100.00	-10.00	
-10.00	1.09 >	-10.00	
-10.00	-7.88 >	-10.00	
-10.00	-8.69 ▶	-10.00	

Always Go Forward

	7 mays co romana		
-10.00	100.00	-10.00	
-10.00	70.20	-10.00	
-10.00	48.74	-10.00	
-10.00	33.30	-10.00	

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$\begin{aligned} V_0^{\pi}(s) &= 0 \\ V_{k+1}^{\pi}(s) &\leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')] \end{aligned}$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

• This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

• Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2 Discount = 0.9 Living reward = 0 k=1

Noise = 0.2 Discount = 0.9 Living reward = 0 k=2 k=3

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0

k=4

Noise = 0.2 Discount = 0.9 Living reward = 0 k=5

Noise = 0.2 Discount = 0.9 Living reward = 0

k=6

Noise = 0.2 Discount = 0.9 Living reward = 0 k=7

Noise = 0.2 Discount = 0.9 Living reward = 0 k=8 k=9

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0

k=10

Noise = 0.2 Discount = 0.9 Living reward = 0 k=11

Noise = 0.2 Discount = 0.9 Living reward = 0

k=12

Noise = 0.2 Discount = 0.9 Living reward = 0 k=100

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP

Value

100

• You do not actually play the game!

Play Red

Play Blue

No discount

100 time steps

Both states have the same value

Let's Play!

\$2 \$2 \$0 \$2 \$2 \$2 \$2 \$0 \$0 \$0

Online Planning

• Rules changed! Red's win chance is different.

Let's Play!

\$0 \$0 \$0 \$2 \$0 \$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!