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Q1. [1 pt] Warm-Up

Circle the CS 188 mascot
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Q2. [6 pts] Search & Games
(a) [4 pts] In this question, we will be formulating flying between two locations as a search problem. After working

hard all summer, you have decided to go on a vacation in Australia. You want to get there as fast as possible,
regardless of the cost or the number of flights you need to take. Flights have a departure time and location
and an arrival time and location. Between flights you wait in the city. Formulate this as a search problem with
a minimal state space:

What are the states for this search problem?
# Current city
# Current city and amount of time spent traveling so far
 Current city and current time
# Current city, current time, and amount of time spent traveling so far

What is the successor function for this search problem?

#
Action: Take a flight
Successor: Update city
Cost: Time length of the flight plus time until takeoff

 
Action: Take a flight
Successor: Update city and current time
Cost: Time length of the flight plus time until takeoff

#
Action: Take a flight and increase the amount of time so far
Successor: Update city and time spent traveling
Cost: Time length of the flight plus time until takeoff

#
Action: Take a flight and increase the amount of time so far
Successor: Update city, time spent traveling, and current time
Cost: Time length of the flight plus time until takeoff

What is the start state?
# Oakland
# Oakland, 0 minutes traveling
 Oakland, 8pm
# Oakland, 8pm, 0 minutes traveling

What is the goal test?
 Check if the current city is in Australia
# Check if the amount of time spent traveling is minimal
# Check if the current city is in Australia and if the amount of time spent traveling is minimal
# Check if the current city is in Australia, the amount of time spent traveling is minimal, and if the current
time is minimal

(b) [2 pts] In this question, you are writing a program to compete in a chess tournament. Because it is your first
time in the competition, you have been given access to your opponent’s program and are allowed to do anything
with it. (They are experienced and so do not get access to your program.) You adjust your minimax: instead
of considering all actions at a min node, you run your opponent’s code and consider only the action it would
take. Time spent running your opponent’s code does not count towards your own time limit. Select all of the
statements below that are true. If none are true, select none of them.

 Your minimax search tree is equivalent to a game tree constructed with only max nodes
 Running your code for the same amount of time as in regular minimax, you are able to search deeper in
the game tree than you could with regular minimax
# If you search to the same depth as you could with regular minimax you will always return the same answer
as regular minimax
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Q3. [6 pts] CSPs
In this question we are considering CSPs for map coloring. Each region on the map is a variable, and their values
are chosen from {black, gray, white}. Adjacent regions cannot have the same color. The figures below show the
constraint graphs for three CSPs and an assignment for each one. None of the assignments are solutions as each has
a pair of adjacent variables that are white. For both parts of this question, let the score of an assignment be the
number of satisfied constraints (so a higher score is better).

(1) (2) (3)

(a) [6 pts] Consider applying Local Search starting from each of the assignments in the figure above. For each
successor function, indicate whether each configuration is a local optimum and whether it is a global optimum
(note that the CSPs may not have satisfying assignments).

Successor Function CSP Local optimum? Global Optimum?

Change a single variable

(1) Yes No Yes No

(2) Yes No Yes No

(3) Yes No Yes No

Change a single variable, or a pair of variables

(1) Yes No Yes No

(2) Yes No Yes No

(3) Yes No Yes No
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Q4. [10 pts] MDPs & RL

Wall:

Gold:

x

y

Consider the grid-world MDP above. The goal of the game is to reach the pot of gold. As soon as you land on the
pot of gold you receive a reward and the game ends. Your agent can move around the grid by taking the following
actions: North, South, East, West. Moving into a square that is not a wall is always successful. If you attempt
to move into a grid location occupied by a wall or attempt to move off the board, you remain in your current grid
location.

Our goal is to build a value function that assigns values to each grid location, but instead of keeping track of a
separate number for each location, we are going to use features. Specifically, suppose we represent the value of state
(x, y) (a grid location) as V (x, y) = w>f(x, y). Here, f(x, y) is a feature function that maps the grid location (x, y)
to a vector of features and w is a weights vector that parameterizes our value function.

In the next few questions, we will look at various possible feature functions f(x, y). We will think about the
value functions that are representable using each set of features, and, further, think about which policies could be
extracted from those value functions. Assume that when a policy is extracted from a value function, ties can be
broken arbitrarily. In our definition of feature functions we will make use of the location of the pot of gold. Let the
gold’s location be (x∗, y∗). Keep in mind the policies (i), (ii), (iii), (iv), (v), and (vi) shown below.

(i) (ii) (iii)

(iv) (v) (vi)

(a) [2 pts] Suppose we use a single feature: the x-distance to the pot of gold. Specifically, suppose f(x, y) = |x−x∗|.
Which of the policies could be extracted from a value function that is representable using this feature function?
Assume the weights vector w is not allowed to be 0. Circle all that apply.

 (i) # (ii)  (iii) # (iv) # (v) # (vi)
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(b) [2 pts] Suppose we use a single feature: the y-distance to the pot of gold. Specifically, suppose f(x, y) = |y−y∗|.
Which of the policies could be extracted from a value function that is representable using this feature function?
Assume the weights vector w is not allowed to be 0. Circle all that apply.

# (i)  (ii) # (iii)  (iv) # (v) # (vi)

(c) [2 pts] Suppose we use a single feature: the Manhattan distance to the pot of gold. Specifically, suppose
f(x, y) = |x − x∗| + |y − y∗|. Which of the policies could be extracted from a value function that is repre-
sentable using this feature function? Assume the weights vector w is not allowed to be 0. Circle all that apply.

# (i) # (ii) # (iii) # (iv) # (v)  (vi)

(d) [2 pts] Suppose we use a single feature: the length of the shortest path to the pot of gold. Which of the policies
could be extracted from a value function that is representable using this feature function? Assume the weights
vector w is not allowed to be 0. Circle all that apply.

# (i) # (ii) # (iii) # (iv)  (v) # (vi)

(e) [2 pts] Suppose we use two features: the x-distance to the pot of gold and the y-distance to the pot of gold.
Specifically, suppose f(x, y) = (|x−x∗|, |y−y∗|). Which of the policies could be extracted from a value function
that is representable using this feature function? Assume the weights vector w must have at least one non-zero
entry. Circle all that apply.

 (i)  (ii)  (iii)  (iv) # (v)  (vi)
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Q5. [10 pts] Probability
(a) [2 pts] Select all of the expressions below that are equivalent to P (A | B,C) given no independence assumptions.

# ∑
d P (A | B,C,D = d)

 ∑
d P (A,D = d | B,C)

# P (A | B)P (A | C)

# P (A | C)

# P (A | B)P (B | C)

# P (A | C)P (C | B)

 P (A,B,C)
P (B,C)

 P (A)P (B|A)P (C|A,B)
P (C)P (B|C)

(b) [2 pts] Select all of the expressions below that are equivalent to P (A | B,C) given A ⊥⊥ B.

# ∑
d P (A | B,C,D = d)

 ∑
d P (A,D = d | B,C)

# P (A | B)P (A | C)

# P (A | C)

# P (A | B)P (B | C)

# P (A | C)P (C | B)

 P (A,B,C)
P (B,C)

 P (A)P (B|A)P (C|A,B)
P (C)P (B|C)

(c) [2 pts] Select all of the expressions below that are equivalent to P (A | B,C) given B ⊥⊥ C | A.

# ∑
d P (A | B,C,D = d)

 ∑
d P (A,D = d | B,C)

# P (A | B)P (A | C)

# P (A | C)

# P (A | B)P (B | C)

# P (A | C)P (C | B)

 P (A,B,C)
P (B,C)

 P (A)P (B|A)P (C|A,B)
P (C)P (B|C)

(d) [2 pts] Select all of the expressions below that hold for any distribution over four random variablesA,B, C andD.

 P (A,B | C,D) = P (A | C,D)P (B | A,C,D)

# P (A,B) = P (A,B | C,D)P (C,D)

# P (A,B | C,D) = P (A,B)P (C,D)P (C,D | A,B)

# P (A,B | C,D) = P (A,B)P (D)P (C,D | A,B)

(e) [2 pts] Circle all of the Bayes’ Nets below in which the following expression always holds:

P (A,B)P (C) = P (A)P (B,C)

A

C

B A

C

B A

C

B A

C

B

A

C

B A

C

B A

C

B A

C

B
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Q6. [12 pts] VPI
You’re playing a game on TV where you are asked a yes-or-no question. If you answer it correctly, you could win
a lot of money! You decide to approach your decision from the perspective of Value of Perfect Information. Your
answer, A, is either yes or no. The goal is for your answer, A, to match the correct answer, C.

C A

U

C P (C)
yes 0.2
no 0.8

C A U(C,A)

yes yes +106

yes no −103

no yes 0

no no +104

(a) Maximum Expected Utility

Compute the following quantities:

(i) [2 pts] EU(yes) =

EU(yes) =
∑
ac

P (ac)U(ac, yes)

= P (yes)U(yes, yes) + P (no)U(no, yes)

= 0.2(106) + 0.8(0)

= 200000 = 2× 105

(ii) [2 pts] EU(no) =

EU(no) =
∑
ac

P (ac)U(ac, no)

= P (yes)U(yes, no) + P (no)U(no, no)

= 0.2(−103) + 0.8(104)

= 7800

(iii) [1 pt] MEU({}) =

max
ac

EU(ac) = max(EU(yes), EU(no))

= max(200000, 7800)

= 200000

(iv) [1 pt] Optimal decision: A = yes
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(b) [2 pts] A Game of Telephone

In this game you have the option to phone a friend to find out what they think the answer is. Your friend
will be asked the same question and give you their answer, F , which they also want to match C. Additional
probability tables have been computed for you.

C A

UF

C P (C)
yes 0.2
no 0.8

F C P (F |C)
yes yes 0.6
yes no 0.2
no yes 0.4
no no 0.8

C A U(C,A)

yes yes +106

yes no −103

no yes 0

no no +104

F P (F )
yes 0.25
no 0.75

C F P (C|F )
yes yes 0.5
yes no 0.1
no yes 0.5
no no 0.9

We have worked out for you that:
MEU({F = yes}) = 5× 105 (yes)
MEU({F = no}) = 105 (yes)

What is V PI({F})?

V PI({F}) =
P (F = yes)MEU({F = yes}) + P (F = no)MEU({F = no})−MEU({})

= 0.25(500000) + 0.75(100000)− 200000 = 0

(c) [4 pts] Game of Shows

Eventually, your friend gives you their answer, but you notice that they sounded a bit. . . off. Maybe your friend
is just sick — or maybe your arch-nemesis Leland has your friend’s phone tapped!

As a result, the answer that you heard, H, may not be the same as the answer that your friend gave you, F .
You introduce two new nodes, one for H, the answer you heard, and one for T , which represents the probability
that your arch-nemesis has intercepted your friend’s answer.

C A

UF

H

T

Determine whether the following expressions could be less than, equal to, or greater than zero. Fill in all of
the choices that could be true under some setting of the probability tables P (T ) and P (H|T, F ).
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V PI(F | H) less than 0# equal to 0 greater than 0 

V PI(T ) less than 0# equal to 0 greater than 0#

V PI(T | H) less than 0# equal to 0 greater than 0 

V PI(T | F,H) less than 0# equal to 0 greater than 0#

VPI is non-negative, so it will never be less than 0. Furthermore, if the parents of the utility node U are
conditionally independent of node Z given some evidence E, then V PI(Z|E) = 0.
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Q7. [12 pts] Bayes’ Nets

A

C

DB

E
P (A)

+a 0.25
−a 0.75

P (B|A) +b −b
+a 0.5 0.5
−a 0.25 0.75

P (C|A) +c −c
+a 0.2 0.8
−a 0.6 0.4

P (D|B) +d −d
+b 0.6 0.4
−b 0.8 0.2

P (E|B) +e −e
+b 0.25 0.75
−b 0.1 0.9

(a) Using the Bayes’ Net and conditional probability tables above, calculate the following quantities:

(i) [1 pt] P (+a,+b) = 0.25 ∗ 0.5 = 0.125 = 1
8

(ii) [2 pts] P (+a|+ b) = 0.25∗0.5
0.25∗0.5+0.25∗0.75 = 0.4 = 2

5

(iii) [1 pt] P (+b|+ a) = 0.5

(b) Now we are going to consider variable elimination in the Bayes’ Net above.

(i) [1 pt] Assume we have the evidence +c and wish to calculate P (E | +c). What factors do we have initially?
P (A), P (B | A), P (+c | A), P (D | B), P (E | B)

(ii) [1 pt] If we eliminate variable B, we create a new factor. What probability does that factor correspond
to? P (D,E | A)
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This is the same figure as the previous page, repeated here for your convenience:

A

C

DB

E
P (A)

+a 0.25
−a 0.75

P (B|A) +b −b
+a 0.5 0.5
−a 0.25 0.75

P (C|A) +c −c
+a 0.2 0.8
−a 0.6 0.4

P (D|B) +d −d
+b 0.6 0.4
−b 0.8 0.2

P (E|B) +e −e
+b 0.25 0.75
−b 0.1 0.9

(iii) [2 pts] What is the equation to calculate the factor we create when eliminating variable B? f(A,D,E) =

∑
B P (B | A) ∗ P (D | B) ∗ P (E | B)

(iv) [2 pts] After eliminating variable B, what are the new set of factors? As in (ii), write the probabilities
that the factors represent. For each factor, also provide its size. Use only as many rows as you need to.

Factor Size after elimination

P (A) 2

P (+c | A) 2

P (D,E | A) 23

(v) [1 pt] Now assume we have the evidence −c and are trying to calculate P (A|−c). What is the most efficient
elimination ordering? If more than one ordering is most efficient, provide any one of them. Anything that
has B third or later

(vi) [1 pt] Once we have run variable elimination and have f(A,−c) how do we calculate P (+a | − c)? (give

an equation) f(+a,−c)
f(+a,−c)+f(−a,−c) or note that elimination is unnecessary - just use Bayes’ rule
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Q8. [7 pts] Bayes’ Nets Sampling
Susan, Jerry, Beatrice, and Xavier are being given some money, but they have to share it in a very particular way.
First, Susan will be given a number of dollars (an integer) between 1 and 100 (inclusive). The number is chosen
uniformly at random from the 100 possibilities. In this problem, we will use the random variable S to represent the
amount of money Susan receives.

S J B X

Susan

Jerry

Beatrice

Xavier

Next, Susan will give some portion of her money to Jerry. The amount she
gives him will be represented by the random variable J . Susan chooses how
much to give Jerry by selecting an integer uniformly at random between 1
and S (inclusive). Jerry will then follow the same process, giving B dollars
to Beatrice (selected uniformly at random between 1 and J , inclusive).
Finally, Beatrice will give some portion of her money to Xavier (uniformly
at random between 1 and B, inclusive). The Bayes’ net corresponding to
this process is shown to the right.

Suppose you are Xavier and you receive $5 from Beatrice (i.e. X = 5). You want to know how much money Susan
received. In particular, you want to know the probability that Susan received more than $50. In other words, you
want to know P (S > 50|X = 5). You decide to try various sampling methods using the Bayes’ net above (and the
conditional probability tables implied by the money sharing process) to approximate P (S > 50|X = 5).

(a) [2 pts] You try using prior sampling, generating the following samples from your model:

(S = 52, J = 21, B = 10, X = 5)
(S = 34, J = 21, B = 6, X = 3)
(S = 96, J = 48, B = 12, X = 2)
(S = 13, J = 12, B = 10, X = 1)
(S = 54, J = 12, B = 11, X = 6)
(S = 91, J = 32, B = 31, X = 29)

What is the estimate of P (S > 50|X = 5) based on these samples? 1

(b) You try using likelihood weighting, generating the following samples from your model:

Sample Likelihood weighting

(S = 52, J = 21, B = 10, X = 5) 0.1

(S = 34, J = 21, B = 4, X = 5) 0.0

(S = 87, J = 12, B = 10, X = 5) 0.1

(S = 41, J = 12, B = 5, X = 5) 0.2

(S = 91, J = 32, B = 4, X = 5) 0.0

(i) [3 pts] Write the corresponding weight used by likelihood weighting next to each sample.

(ii) [2 pts] What is the estimate of P (S > 50|X = 5) based on these samples? 1
2
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Q9. [12 pts] HMMs

V0 V1 V2 Vn Vn+1

(a) [8 pts] Consider a Markov model like the one above. For the first three parts of this problem, assume the
domain of our variables is {a, b}. Fill in the table below with the probability of being in each state after a
large number of transitions, when P (Vn) = P (Vn+1). If the values never reach a point when P (Vn) = P (Vn+1),
write ‘None’.

In the left part of the table, assume that we start with a uniform distribution (P (V0 = a) = P (V0 = b) = 0.5).
In the right part of the table, assume that we start with the distribution that has P (V0 = a) = 1.0.

P (Vn) given that P (V0) is uniform P (Vn) given that P (V0 = a) = 1.0
Transition Probabilities Vn = a Vn = b Vn = a Vn = b

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b

a 0.5 0.5
b 0.5 0.5

0.5 0.5 0.5 0.5

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b

a 0.9 0.1
b 0.3 0.7

0.75 0.25 0.75 0.25

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b

a 0.0 1.0
b 1.0 0.0

0.5 0.5 None None

For this part our variables have the domain {a, b, c}. Fill in the table at the bottom with the probability of
being in each state after a large number of transitions, when P (Vn) = P (Vn+1). In the left part of the table,
assume that we start with a uniform distribution (P (V0 = a) = P (V0 = b) = P (V0 = c) = 1

3 ). In the right part
of the table, assume that we start with the distribution that has P (V0 = a) = 1.0.

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b Vi = c

a 0.5 0.5 0.0
b 0.5 0.5 0.0
c 0.0 0.0 1.0

P (Vn) given that P (V0) is uniform P (Vn) given that P (V0 = a) = 1.0
a b c a b c

0.33 0.33 0.33 0.5 0.5 0.0
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Now we will consider a Hidden Markov Model, and look at properties of the Viterbi Algorithm. The Viterbi algorithm
finds the most probable sequence of hidden states X1:S given a sequence of observations y1:S . Recall that for the
canonical HMM structure, the Viterbi algorithm performs the following update at each time step:

mt[xt] = P (yt|xt) max
xt−1

[
P (xt|xt−1)mt−1[xt−1]

]
Assume we have an HMM where:

• The hidden variable X can take on H values

• The (observed) emission variable Y can take on E values

• Our sequence has S steps

(b) (i) [2 pts] What is the run time of the Viterbi algorithm?

# O(SEH) # O(SEH2)  O(SH2)

# O(SH) # O(EH) # O(EH2)

# O(SH2 + SEH)

Ignoring the storage of the emission probabilities, P (Yt|Xt), and the transition probabilities, P (Xt|Xt−1),
what are the storage requirements of the Viterbi algorithm?

# O(S) # O(E) # O(H)

 O(SH) # O(SE) # O(EH)

# O(S +H) # O(S + E) # O(E +H)

# O(SEH)

Now, assume that most of the transitions in our HMM have probability zero. In particular, suppose that for
any given hidden state value, there are only K possible next state values for which the transition probability
is non-zero. To exploit this sparsity, we change the Viterbi Algorithm to only consider the non-zero transition
edges during each max computation inside each update. You can think of this as the Viterbi algorithm ignoring
edges that correspond to zero probability transitions in the transition lattice diagram.

(ii) [2 pts] What is the run time of this modified algorithm?

# O(SEH) # O(SEH2) # O(SH2)

# O(SH) # O(EH) # O(EH2)

# O(SH2 + SEH)

# O(SEK) # O(SEHK)  O(SHK)

# O(SK) # O(EK) # O(EHK)

# O(SK + SEK) # O(SHK + SEK)

Ignoring the storage of the emission probabilities, P (Yt|Xt), and the transition probabilities, P (Xt|Xt−1),
what are the storage requirements of this modified Viterbi algorithm?

# O(S) # O(E) # O(H)

 O(SH) # O(SE) # O(EH)

# O(S +H) # O(S + E) # O(E +H)

# O(SEH)

# O(K) # O(SK) # O(EK)

# O(HK) # O(S +K) # O(E +K)

# O(H +K) # O(SEK)
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Q10. [6 pts] Particle Filtering
You’ve chased your arch-nemesis Leland to the Stanford quad. You enlist two robo-watchmen to help find him! The
grid below shows the campus, with ID numbers to label each region. Leland will be moving around the campus. His
location at time step t will be represented by random variable Xt. Your robo-watchmen will also be on campus, but
their locations will be fixed. Robot 1 is always in region 1 and robot 2 is always in region 9. (See the * locations
on the map.) At each time step, each robot gives you a sensor reading to help you determine where Leland is. The
sensor reading of robot 1 at time step t is represented by the random variable Et,1. Similary, robot 2’s sensor reading
at time step t is Et,2. The Bayes’ Net to the right shows your model of Leland’s location and your robots’ sensor
readings.

1* 2 3 4 5

6 7 8 9* 10

11 12 13 14 15

X0 X1 X2
...

E0,1

E0,2

E1,1

E1,2

E2,1

E2,2

In each time step, Leland will either stay in the same region or move to an adjacent region. For example, the
available actions from region 4 are (WEST, EAST, SOUTH, STAY). He chooses between all available actions with
equal probability, regardless of where your robots are. Note: moving off the grid is not considered an available action.

Each robot will detect if Leland is in an adjacent region. For example, the regions adjacent to region 1 are 1, 2, and
6. If Leland is in an adjacent region, then the robot will report NEAR with probability 0.8. If Leland is not in an
adjacent region, then the robot will still report NEAR, but with probability 0.3.

For example, if Leland is in region 1 at time step t the probability tables are:

E P (Et,1|Xt = 1) P (Et,2|Xt = 1)

NEAR 0.8 0.3

FAR 0.2 0.7

(a) [2 pts] Suppose we are running particle filtering to track Leland’s location, and we start at t = 0 with particles
[X = 6, X = 14, X = 9, X = 6]. Apply a forward simulation update to each of the particles using the random
numbers in the table below.

Assign region IDs to sample spaces in numerical order. For example, if, for a particular particle, there
were three possible sucessor regions 10, 14 and 15, with associated probabilities, P (X = 10), P (X = 14) and
P (X = 15), and the random number was 0.6, then 10 should be selected if 0.6 ≤ P (X = 10), 14 should be
selected if P (X = 10) < 0.6 < P (X = 10) + P (X = 14), and 15 should be selected otherwise.

Particle at t = 0 Random number for update Particle after forward simulation update

X = 6 0.864 11

X = 14 0.178 9

X = 9 0.956 14

X = 6 0.790 11
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(b) [2 pts] Some time passes and you now have particles [X = 6, X = 1, X = 7, X = 8] at the particular time step,
but you have not yet incorporated your sensor readings at that time step. Your robots are still in regions 1 and
9, and both report NEAR. What weight do we assign to each particle in order to incorporate this evidence?

Particle Weight

X = 6 0.8 * 0.3

X = 1 0.8 * 0.3

X = 7 0.3 * 0.3

X = 8 0.3 * 0.8

(c) [2 pts] To decouple this question from the previous question, let’s say you just incorporated the sensor readings
and found the following weights for each particle (these are not the correct answers to the previous problem!):

Particle Weight

X = 6 0.1

X = 1 0.4

X = 7 0.1

X = 8 0.2

Normalizing gives us the distribution

X = 1 : 0.4/0.8 = 0.5

X = 6 : 0.1/0.8 = 0.125

X = 7 : 0.1/0.8 = 0.125

X = 8 : 0.2/0.8 = 0.25

Use the following random numbers to resample you particles. As on the previous page, assign region IDs to
sample spaces in numerical order.

Random number: 0.596 0.289 0.058 0.765

Particle: 6 1 1 8
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Q11. [10 pts] ML: Maximum Likelihood

F1

F2

L

F1

F2

L

F1

F2

L

F1

F2

L

(i) (ii)

(iii) (iv)

Training Data
(L = 1, F1 = 1, F2 = 1)

(L = 1, F1 = 1, F2 = 1)

(L = 0, F1 = 1, F2 = 1)

(L = 1, F1 = 0, F2 = 0)

(L = 0, F1 = 0, F2 = 0)

(L = 0, F1 = 0, F2 = 0)

(L = 0, F1 = 0, F2 = 1)

You’ve decided to use a model-based approach to classification of text documents. Your goal is to build a classifier
that can determine whether or not a document is about cats. You’re taking a minimalist approach and you’re only
characterizing the input documents in terms of two binary features: F1 and F2. Both of these features have domain
{0, 1}. The thing you’re trying to predict is the label, L, which is also binary valued. When L = 1, the document is
about cats. When L = 0, the document is not.

The particular meaning of the two features F1 and F2 is not important for your current purposes. You are only
trying to decide on a particular Bayes’ net structure for your classifier. You’ve got your hands on some training data
(shown above) and you’re trying to figure out which of several potential Bayes’ nets (also shown above) might yield
a decent classifier when trained on that training data.

(a) [2 pts] Which of the Bayes’ nets, once learned from the training data with maximum likelihood estimation,
would assign non-zero probability to the following query: P (L = 1|F1 = 0, F2 = 0)? Circle all that apply.

 (i)  (ii)  (iii)  (iv)

(b) [2 pts] Which of the Bayes’ nets, once learned from the training data with maximum likelihood estimation,
would assign non-zero probability to the following query: P (L = 1|F1 = 0, F2 = 1)? Circle all that apply.

# (i)  (ii)  (iii) # (iv)

(c) [2 pts] Which of the Bayes’ nets, once learned from the training data with Laplace smoothing using k = 1,
would assign non-zero probability to the following query: P (L = 1|F1 = 0, F2 = 1)? Circle all that apply.

 (i)  (ii)  (iii)  (iv)

(d) [2 pts] What probability does Bayes’ net (i), once learned from the training data with Laplace smoothing using
k = 1, assign to the query P (L = 1|F1 = 0, F2 = 1)?

1
3

(e) [2 pts] As k → ∞ (the constant used for Laplace smoothing), what does the probability that Bayes’ net (i)
assigns to the query P (L = 1|F1 = 0, F2 = 1) converge to?

1
2
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Q12. [8 pts] ML: Perceptrons and Kernels
You’ve decided to single-handedly advance AI by constructing a perfect classifier to separate pictures of dogs and
cats. With your state of the art 9-pixel camera, you’ve taken 4 pictures of dogs and 4 pictures of cats. These are the
pictures of dogs (Class +):

(D-1) (D-2) (D-3) (D-4)

Class +

And these are the pictures of cats (Class -): (the cat is hiding in the second picture)

(C-1) (C-2) (C-3) (C-4)

Class -

You decide to mathematically model the dataset as:

x1 x2 x3

x4 x5 x6

x7 x8 x9

= (x1, x2, x3, x4, x5, x6, x7, x8, x9) = x

where xi = 1 if the corresponding pixel is black and 0 otherwise.

(a) Impressed with the quality of your photos, you want to run the perceptron algorithm with the weight vector
initialized to w0 = (0, 0, 0, 1, 1, 1, 1, 1, 1). When your classifier gives a positive score, it predicts dog. When
your classifier gives a negative score it predicts cat. To break ties, since you like cats more than dogs, when
your classifier gives a score of 0, it predicts cat. Using the ordering left to right, dogs first and then cats:

(i) [1 pt] What is the first misclassified training datum? the first cat

(ii) [2 pts] What is the weight vector after the first perceptron update? It misclassifies the first cat, so the
update is w5 = (0, 0, 0, 0, 0, 1, 1, 1, 1)

(b) [2 pts] At heart, you’re an artist. You feel the pictures of cats and dogs would look better if you changed them
a little. Under which of the following transformations is the dataset above NOT linearly separable?

 The identity transformation, φ(x) = x. In other words, the dataset above is not linearly separable.

 φ(x) = x̄. That is, if a cell is black it is turned white and vice versa.

 A rotation 90 degree clockwise

 A horizontal reflection

 The number of times each of the following patterns appear:
(e.g. D-1 contains the first pattern once and the second pattern three times.)
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(c) [3 pts] Consider the original feature space (i.e. none of the transformations above have been applied). Indicate
whether the decision rules below can be represented by a weight vector in the original feature space. If yes,
then include such a weight vector.

Predict dog (+) if at least 3 squares are black. no

Predict dog (+) if any two adjacent squares are black. no

Predict cat (-) if any square other than the corner squares is black. We accepted the following three answers
(which depended on interpretation of the question):

no

yes w = (1,−∞, 1,−∞,−∞,−∞, 1,−∞, 1)

yes w = (∞, 0,∞, 0, 0, 0,∞, 0,∞)

Predict dog (+) if the photo is symmetric with respect to a 90 degree rotation. no

Predict dog (+) if the photo is symmetric with respect to its horizontal and vertical reflections. no

21


