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Q1. [1 pt] Agent Testing Today!

It’s testing time! Circle your favorite robot below. We hope you have fun with the rest of the exam!

Any answer was acceptable.

3



Q2. [35 pts] Potpourri
(a) Game trees

(i) [2 pts] Fill in all missing values in this game tree. Next, cross out branches pruned by alpha-beta search.
(Upward arrows denote a maximizing player, while downward arrows denote a minimizing player.)

(ii) [1 pt] In a minimax game, a leaf node that is the first child of its parent may be pruned:

# Always # Sometimes  Never

(iii) [1 pt] In an expectimax game, a leaf node that is the last child of its parent may be pruned:

# Always  Sometimes  Never

We accepted either “Sometimes” (corresponding to a scenario where the values values are known to be
bounded) or “Never” (corresponding to a scenario where the values are not known to be bounded).

(b) CSPs
In a general constraint satisfaction problem with N binary-valued variables, backtracking search will backtrack
at least (i) times and at most (ii) times. (Choose the tightest upper bound.)

(i) [1 pt] O(1) # O(n) # O(n2) # O(2n) # O(n!)

(ii) [1 pt]# O(1) # O(n) # O(n2)  O(2n) # O(n!)

(c) [1 pt] Utilities
Aldo has a choice between (1) receiving four apples with certainty, and (2) a lottery in which he will receive
two, four, or six apples, each with probability 1/3.

Write down a monotonically decreasing utility U(a) (where a is the number of apples) such that Aldo
strictly prefers to enter the lottery. You may assume a > 0.

4



U(a) = 1
a ,−
√
a, or any other function with negative first derivative and positive second derivative
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(d) Search and Heuristics
Consider the graph and heuristics below for the following problems.

S

A

B

C

D

G

1

3 3

1 1
3

2

12

State h1(s) h2(s) h3(s)
S 3 2 2
A 3 2 2
B 5 5 5
C 2 3 2
D 2 2 1
G 0 0 0

For the following, mark all that are true about the heuristic in question.

(i) [1 pt] h1(s)

� Admissible � Consistent � Neither

(ii) [1 pt] h2(s)

� Admissible � Consistent � Neither

(iii) [1 pt] h3(s)

� Admissible � Consistent � Neither

For the following search algorithms, fill in the minimal sufficient condition on the heuristic for the algorithm
to be guaranteed to be optimal. Fill in “neither” if neither condition is sufficient.

(iv) [1 pt] A∗ Tree Search

# Consistent Admissible# Neither

(v) [1 pt] A∗ Graph Search

 Consistent# Admissible# Neither

(vi) [1 pt] Greedy Search

# Consistent# Admissible Neither
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(e) VPI and Decision Networks For the following question, consider the graph below.

2For the following, decide whether the statement equals 0, does not equal 0, or we need more information to
decide. If we need more information to decide, write a relation that would guarantee it to be equal to 0.

(i) [1 pt] V PI(H)
# Equal to 0
# Not Equal to 0
 Need more information:
We would need H to be independent of U for this to be true.

(ii) [1 pt] V PI(H|D)
 Equal to 0
# Not Equal to 0
# Need more information:

(iii) [1 pt] V PI(D)
# Equal to 0
# Not Equal to 0
 Need more information:
We would need D to be independent of U for this to be true.

This question seemed to stump a lot of people, remember, and this is crucial, we can NOT guarantee dependence
unless we see the CPTs. Not Equal to 0 should never be the correct answer.

(f) Naive Bayes

(i) [1 pt] In the Naive Bayes model, features are independent effects of the label.

 True # False

(ii) [1 pt] Laplace smoothing helps to achieve better accuracy on the training data.

# True  False

Consider the following table of data.

A 1 0 1 2 0 1 2 1 2 0
B 0 2 2 1 2 2 1 0 0 1
Y + − + + − + − − − +

(iii) [1 pt] Find the following quantities. You can leave your answers as fractions.

P (Y = +) = 1/2

P (A = 0|Y = +) = 1/5

P (B = 2|Y = −) = 2/5
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(iv) [2 pts] Find the following quantities, using Laplace smoothing with k = 2. You can leave your answers as
fractions.

P (A = 1|Y = +) = (3 + 2)/(5 + 2 · 3) = 5/11

P (B = 1|Y = −) = (1 + 2)/(5 + 2 · 3) = 3/11

(g) Perceptron

(i) [1 pt] The perceptron algorithm will converge even if the data is not linearly separable.

# True  False

(ii) [1 pt] If while running the perceptron algorithm we make one pass through the data and make no classi-
fication mistakes, the algorithm has converged.

 True # False

(iii) [1 pt] If we run the perceptron with no bias on d dimensional data, the decision boundary produced by
the algorithm is a hyperplane that passes through the origin of Rd.

 True # False

(iv) [3 pts] Suppose we have linearly separable three-class data with classes (A,B,C) and run perceptron with

initial weights w
(0)
A , w

(0)
B , and w

(0)
C until convergence. Let N be the number of data points, and let T be

the number of updates to the weights before convergence. Let s = w
(0)
A + w

(0)
B + w

(0)
C . What is the sum

w
(T )
A + w

(T )
B + w

(T )
C ?

 s

# Ns

# Ts

# NTs

# Zero vector

# s
‖s‖

# N s
‖s‖

# T s
‖s‖

# NT s
‖s‖

# None of the above

(v) [2 pts] Consider a perceptron update with step size λt = 1
2t . In other words, for a two class problem the

t−th iteration is wt ← wt + λtyixi if (xi, yi) is the selected misclassified point to perform the update.

� This perceptron converges even if the data
is not linearly separable.

� This perceptron update only converges if
the data is linearly separable.

� The order of the data feed will affect the
outome of the algorithm.

� The order of the data feed will not affect
the outcome of the algorithm.

(vi) [2 pts] If we run the perceptron update defined above on a linearly separable dataset, it is guaranteed
that the algorithm will converge to a linear separator that achieves perfect training accuracy.

# True  False

(vii) [2 pts] Aldo wants to use perceptron to build a classifier for his binary class data {xi} with labels
yi ∈ {+1,−1}. He has noticed however that his training data is not linearly separable. He has devised a
brilliant idea. He decided that he will instead train with the data zi = (xi, yi) and labels yi. Is the new
data, zi with labels yi linearly separable?

 Yes # No

Comment on Aldo’s decision. Do you think it is a good idea? Why or why not?

Although this renders the data linearly separable, it is a very bad idea. The classifier would be unusable,
because it would not be able to be evaluated at any new query point. We don’t know the right label for
this query point!
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(h) Optimization

(i) [1 pt] Stochastic gradient descent is guaranteed to arrive at a global optimum.

# True  False

(ii) [1 pt] Gradient descent with momentum makes use of second derivative information.

# True  False
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Q3. [18 pts] GSI Adventures
(a) Missing Exams! The GSIs of 188 are currently looking for where all of the exams have gone! There are

5 GSIs and each one has contact with the other, and they’re looking for a grand total of E exams. Imagine
Berkeley as an M × N grid and each GSI starts in a different place. The E exams are spread throughout
the Berkeley grid and when a GSI visits a grid space, they are able to pick up all of the exams at that space.
During each timestep, a GSI can move 1 grid space. If the exams are not found in T time steps, there will not
be time to grade them, and the staff will be forced to give everyone an A. The students know this, so the GSIs
must always avoid S students in the grid, otherwise they will steal the exams from them.

(i) [3 pts] Davis and Jacob would like to model this as a search problem. The instructors know where the
GSIs start, where the students start, and how they move (that is, student position is a known deterministic
function of time). What is a minimal state representation to model this game? Recall that the locations
of the exams are not known.
Since we don’t know the location of the exams and this is an offline search problem (i.e. we run a simulation
of the environment to come up with a full plan before executing it), there is no way we could know how
many exams we’ve picked up. Therefore the only way to model this game as a search problem is to come
up with a plan that visits all the squares in T time steps while avoiding the students.

We need to know the position of the GSIs, whether each square has been visited, and the current time
step.

(ii) [3 pts] Provide the size of the state representation from above.
2MN (MN)5T

(iii) [2 pts] Which of the following are admissible heuristics for this search problem?

� The number of exams left to be found
� The number of exams left to be found divided by 5
� The minimum Manhattan Distance between a GSI and an unvisited grid space
� The maximum Manhattan Distance between a GSI and an unvisited grid space
� The number of squares in the grid that have not been visited
� The number of squares in the grid that have not been visited divided by 5

Note that in the correct formulation, we do not have enough information to compute the first two proposed
heuristics. In any case, even if we could compute them, neither would be admissible.
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(b) The exams have finally been located, and now, it’s the students’ turn to worry! A student’s utility leading up
to the exam depends on how hard they study (very hard (+v) or just hard (−v)) as well as the chance that
Davis has a cold around the the exam.

If Davis has a cold (+c), he will be too tired to write a hard exam question. He might also be unable to hold
office hours, in which case Bob (a reader) will hold office hours instead (+b). The decision network and the
tables associated with it are shown below:

C P (C)
+c 0.5
−c 0.5

B C P (B|C)
+b +c 0.8
+b −c 0.1
−b +c 0.2
−b −c 0.9

V C U
+v +c 200
+v −c 120
−v +c 250
−v −c 90

Calculate the V PI(B). To do this, in the calculations, calculate MEU(), MEU(+b), and MEU(−b). In order
to get as much partial credit, provide these calculations, as well as any other calculations necessary, in a neat
and readable order. Use the calculated tables below in order to help with the calculations. You may leave your
answers as expressions in terms of probabilities in the table and your answers to previous parts.

B P (B)
+b 0.45
−b 0.55

B C P (C|B)
+b +c 0.89
+b −c 0.11
−b +c 0.18
−b −c 0.81

(i) [2 pts] MEU() = max(.5 ∗ 200 + .5 ∗ 120, .5 ∗ 250 + .5 ∗ 90) = 170

(ii) [3 pts] MEU(+b) = max(.89 ∗ 200 + .11 ∗ 120, .89 ∗ 250 + .11 ∗ 90) = 232.4

(iii) [3 pts] MEU(−b) = max(.18 ∗ 200 + .81 ∗ 120, .18 ∗ 250 + .81 ∗ 90) = 133.2

(iv) [2 pts] V PI(B) = (.45 ∗MEU(+b) + .55 ∗MEU(−b))−MEU()
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Q4. [15 pts] MDPs and RL

Consider the above gridworld. An agent is currently on grid cell S, and would like to collect the rewards that lie on
both sides of it. If the agent is on a numbered square, its only available action is to Exit, and when it exits it gets
reward equal to the number on the square. On any other (non-numbered) square, its available actions are to move
East and West. Note that North and South are never available actions.

If the agent is in a square with an adjacent square downward, it does not always move successfully: when the agent
is in one of these squares and takes a move action, it will only succeed with probability p. With probability 1 − p,
the move action will fail and the agent will instead move downwards. If the agent is not in a square with an adjacent
space below, it will always move successfully.

For parts (a) and (b), we are using discount factor γ ∈ [0, 1].

(a) [2 pts] Consider the policy πEast, which is to always move East (right) when possible, and to Exit when that is the
only available action. For each non-numbered state x in the diagram below, fill in V πEast(x) in terms of γ and p.

(b) [2 pts] Consider the policy πWest, which is to always move West (left) when possible, and to Exit when that is the
only available action. For each non-numbered state x in the diagram below, fill in V πWest(x) in terms of γ and p.
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(c) [2 pts] For what range of values of p in terms of γ is it optimal for the agent to go West (left) from the start
state (S)?

We want 5γ2 ≥ 10γ3p2, which we can solve to get:

Range: p ∈ [0, 1√
2γ

]

(d) [2 pts] For what range of values of p in terms of γ is πWest the optimal policy?

We need, for each of the four cells, to have the value of that cell under πWest to be at least as large as πEast.
Intuitively, the farther east we are, the higher the value of moving east, and the lower the value of moving west
(since the discount factor penalizes far-away rewards).
Thus, if moving west is the optimal policy, we want to focus our attention on the rightmost cell.
At the rightmost cell, in order for moving west to be optimal, then V πEast(s) ≤ V πWest(s), which is 10γp ≤ 5γ4p2,
or p ≥ 2

γ3 .

However, since γ ranges from 0 to 1, the right side of this expression ranges from 2 to ∞, which means p (a
probability, and thus bounded by 1) has no valid value.
Range: ∅

(e) [2 pts] For what range of values of p in terms of γ is πEast the optimal policy?

We follow the same logic as in the previous part. Specifically, we focus on the leftmost cell, where the condition
for πEast to be the optimal policy is: 10γ4p2 ≥ 5γ, which simplifies to p ≥ 1√

2γ3
. Combined with our bound

on any probability being in the range [0, 1], we get:

Range: p ∈
[

1√
2γ3

, 1

]
, which could be an empty set depending on γ.
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Recall that in approximate Q-learning, the Q-value is a weighted sum of features: Q(s, a) =
∑
i wifi(s, a). To

derive a weight update equation, we first defined the loss function L2 = 1
2 (y −

∑
k wkfk(x))2 and found dL2/dwm =

−(y−
∑
k wkfk(x))fm(x). Our label y in this set up is r+ γmaxaQ(s′, a′). Putting this all together, we derived the

gradient descent update rule for wm as wm ← wm + α (r + γmaxaQ(s′, a′)−Q(s, a)) fm(s, a).

In the following question, you will derive the gradient descent update rule for wm using a different loss function:

L1 =

∣∣∣∣∣y −∑
k

wkfk(x)

∣∣∣∣∣
(f) [4 pts] Find dL1/dwm. Show work to have a chance at receiving partial credit. Ignore the non-differentiable

point.

Note that the derivative of |x| is −1 if x < 0 and 1 if x > 0. So for L1, we have:

dL1

dwm
=

{
−fm(x) y −

∑
k wkfk(x) > 0

fm(x) y −
∑
k wkfk(x) < 0

(g) [1 pt] Write the gradient descent update rule for wm, using the L1 loss function.

wm ← wm − αdL1/dwm

←

{
wm + αfm(x) y −

∑
k wkfk(x) > 0

wm − αfm(x) y −
∑
k wkfk(x) < 0
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Q5. [16 pts] Perceptron and Kernels
A kernel is a mapping K(x, y) from pairs vectors in Rd into the real numbers such that K(x, y) = Φ(x) ·Φ(y) where
Φ is a mapping from Rd into RD where D is possibly different from d and even infinite. We say that a mapping
K(x, y) for which such Φ exists is a valid kernel.

(a) The following binary class data has two features, A and B.

Index A B Class
1. 1 1 1
2. 0 3 -1
3. 1 -1 1
4. 3 0 -1
5. -1 1 1
6. 0 -3 -1
7. -1 -1 1
8. -3 0 -1

(i) [3 pts] Select all true statements:

� This data is linearly separable.

� This data is linearly separable if we use a feature map φ((A,B)) = (A2, B2, 1).

� There exists a kernel such that this data is linearly separable.

� For all datasets in which no data point is labeled in more than one distinct way, there exists a
kernel such that the data is linearly separable.

� For all datasets, there exists a kernel such that the data is linearly separable.

� For all valid kernels, there exists a dataset with at least one point from each class that is linearly
separable under that kernel.

� None of the above.

We will be running both the primal (normal) binary (not multiclass) perceptron and dual binary perceptron
algorithms on this dataset. We will initialize the weight vector w to (1, 1) for the primal perceptron algorithm.
Accordingly, we will initialize the α vector to (1, 0, 0, 0, 0, 0, 0, 0) for the dual perceptron algorithm with the
kernel K(x, y) = x · y. Pass through the data using the indexing order provided. There is no bias term.

Write your answer in the box provided. Show your work outside of the boxes to have a chance at receiving
partial credit.

(ii) [1 pt]

What is the first misclassified point?

Point 2.

(iii) [1 pt] For the primal perceptron algorithm, what is the weight vector after the first weight update?

The weight vector after the first weight update will be:

w = (1, 1)− (0, 3) = (1,−2) (1)
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For your convenience, the data is duplicated on this page.

Index A B Class
1. 1 1 1
2. 0 3 -1
3. 1 -1 1
4. 3 0 -1
5. -1 1 1
6. 0 -3 -1
7. -1 -1 1
8. -3 0 -1

(iv) [1 pt] For the dual perceptron algorithm, what is the α vector after the first weight update?

The α vector after the first update will be:

α = (1,−1, 0, 0, 0, 0, 0, 0) (2)

(v) [1 pt] What is the second misclassified point?

Point 4.

(vi) [1 pt] For the primal perceptron algorithm, what is the weight vector after the second weight update?

The weights after the second weight update will be:

w = (1,−2)− (3, 0) = (−2,−2) (3)

(vii) [1 pt] For the dual perceptron algorithm, what is the α vector after the second weight update?

The α vector after the second update will be:

α = (1,−1, 0,−1, 0, 0, 0, 0) (4)

(b) [3 pts] Consider the following kernel function: K(x,y) = (x · y)2 where x,y ∈ R2. Find a valid Φ map for this
kernel. That is, find a vector-to-vector function φ such that φ(x) · φ(y) = K(x,y) = (x · y)2. Show work to
have a chance at receiving partial credit. Any precise answer format is acceptable.

Expanding (x · y)2 = (x1y1 + x2y2)2 = x21y
2
1 + 2x1y1x2y2 + x22y

2
2 so the mapping

Φ(x) = [x21,
√

2x1x2, x
2
2] is valid.
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(c) We have n data points, {(xi, yi)}ni=1, with xi ∈ Rd and yi ∈ {1, 2, . . . ,M}. That is, they are labelled as
belonging to one of M classes. We will run the multiclass perceptron algorithm with an RBF kernel:

K(xi, xj) = exp(− ‖ xi − xj ‖2) (5)

Denote the dual weights at time t as α
(t)
y = (α

(t)
y,1, · · · , α

(t)
y,K) for all classes y = 1, · · · ,M .

(i) [1 pt] What is the right value for K, the dimension of each of the dual weight vectors?

 n

# Mn

# M

# M + n

(ii) [3 pts]

Assume that for some t, and for all y, α
(t)
y has only one nonzero entry. This single nonzero entry equals

one. All the nonzero entries occur at different indices for different y. Describe the decision regions in Rd
for the M classes in terms of distances between points.

The nonzero entries of α
(t)
y correspond to M points in the training data. Call these points the class centers.

Each of these will also correspond to some class. Not necessarily the training point class.

Any new query point x ∈ Rd will be labeled as the class corresponding to the closest class center.
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Q6. [15 pts] Particle Filtering Apprenticeship
Consider a modified version of the apprenticeship problem. We are observing an agent’s actions in an MDP and are
trying to determine which out of a set {π1, . . . , πn} the agent is following. Let the random variable Π take values in
that set and represent the policy that the agent is acting under. We consider only stochastic policies, so that At is
a random variable with a distribution conditioned on St and Π. As in a typical MDP, St is a random variable with
a distribution conditioned on St−1 and At−1. The full Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting). Unfor-
tunately, however, we, the observer, cannot see the states St. Thus we are forced to use an adapted particle filtering
algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate P (Π | a1:t).

(a) The Bayes net for part (a) is

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

(i) [3 pts] Select all of the following that are guaranteed to be true in this model for t > 10:

� St ⊥⊥ St−2 | St−1
� St ⊥⊥ St−2 | St−1, A1:t−1

� St ⊥⊥ St−2 | Π
� St ⊥⊥ St−2 | Π, A1:t−1

� St ⊥⊥ St−2 | Π, St−1

� St ⊥⊥ St−2 | Π, St−1, A1:t−1

� None of the above

We will compute our estimate for P (Π | a1:t) by coming up with a recursive algorithm for computing
P (Π, St | a1:t). (We can then sum out St to get the desired distribution; in this problem we ignore that step.)

(ii) [2 pts] Write a recursive expression for P (Π, St | a1:t) in terms of the CPTs in the Bayes net above. Hint:
Think of the forward algorithm.

P (Π, St | a1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1)P (at | St,Π)P (St | st−1, at−1)
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We now try to adapt particle filtering to approximate this value. Each particle will contain a single state st
and a potential policy πi.

(iii) [2 pts] The following is pseudocode for the body of the loop in our adapted particle filtering algorithm.
Fill in the boxes with the correct values so that the algorithm will approximate P (Π, St | a1:t).

1. Elapse time: for each particle (st, πi), sample a successor st+1 from

P (St+1 | st, at) . The policy π′ in the new particle is πi .

2. Incorporate evidence: To each new particle (st+1, π
′), assign weight

P (at+1 | st+1, π
′) .

3. Resample particles from the weighted particle distribution.

(b) [1 pt] We now observe the acting agent’s actions and rewards at each time step (but we still don’t know the
states). Unlike the MDPs in lecture, here we use a stochastic reward function, so that Rt is a random variable
with a distribution conditioned on St and At. The new Bayes net is given by

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

Notice that the observed rewards do in fact give useful information since d-separation does not give that
Rt ⊥⊥ Π | A1:t. Give an active path connecting Rt and Π when A1:t are observed. Your answer should be an
ordered list of nodes in the graph, for example “St, St+1, At,Π, At−1, Rt−1”.

Rt, St, At,Π. This list reversed is also correct, and many other similar (though more complicated) paths are
also correct.
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(c) We now observe only the sequence of rewards and no longer observe the sequence of actions. The new Bayes
net is:

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

We will compute our estimate for P (Π | r1:t) by coming up with a recursive algorithm for computing
P (Π, St, At | r1:t). (We can then sum out St and At to get the desired distribution; in this problem we ignore
that step.)

(i) [2 pts] Write a recursive expression for P (Π, St, At | r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St, At | r1:t) ∝
∑
st−1

∑
at−1

P (Π, st−1, at−1 | r1:t−1)P (At | St,Π)P (St | st−1, at−1)P (rt | St, At)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state st, a
single action at, and a potential policy πi.

(ii) [2 pts] The following is pseudocode for the body of the loop in our adapted particle filtering algorithm.
Fill in the boxes with the correct values so that the algorithm will approximate P (Π, St, At | r1:t).

1. Elapse time: for each particle (st, at, πi), sample a successor state st+1 from

P (St+1 | st, at) . Then, sample a successor action at+1 from

P (At+1 | st+1, πi) . The policy π′ in the new particle is πi .

2. Incorporate evidence: To each new particle (st+1, at+1, π
′), assign weight

P (rt+1 | st+1, at+1) .

3. Resample particles from the weighted particle distribution.
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(d) Finally, consider the following Bayes net:

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

Here, the task is identical to that in part (a); we see only the actions and want to approximate P (Π, | a1:t).
However, now we are also accounting for the hidden reward variables.

(i) [1 pt] For a fixed state action pair (st, at), what is
∑
rt
P (rt | st, at)?

1

Suppose for the following questions we adapt particle filtering to this model as in previous parts. In particular,
in this algorithm, our particles will also track rt values.

(ii) [1 pt] Comparing to the algorithm in (a), with the same number of particles, this algorithm will give an
estimate of P (Π | a1:t) that is

# More accurate  Equally accurate # Less accurate

(iii) [1 pt] Comparing to the algorithm in (a), with the same number of particles, to compute an estimate,
this algorithm will take

 More time # The same amount of time # Less time
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Q7. [12 pts] Neural Network Data Sufficiency
The next few problems use the below neural network as a reference. Neurons h1−3 and j1−2 all use ReLU activation
functions. Neuron y uses the identity activation function: f(x) = x. In the questions below, let wa,b denote the
weight that connects neurons a and b. Also, let oa denote the value that neuron a outputs to its next layer.

Given this network, in the following few problems, you have to decide whether the data given are sufficient for
answering the question.

(a) [2 pts] Given the above neural network, what is the value of oy?

Data item 1: the values of all weights in the network and the values oh1
, oh2

, oh3

Data item 2: the values of all weights in the network and the values oj1 , oj2

# Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
# Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
# Both statements taken together are sufficient, but neither data item alone is sufficient.
 Each data item alone is sufficient to answer the question.
# Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.

(b) [2 pts] Given the above neural network, what is the value of oh1
?

Data item 1: the neuron input values, i.e., ox1
through ox4

Data item 2: the values oj1 , oj2

# Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
# Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
# Both statements taken together are sufficient, but neither data item alone is sufficient.
# Each data item alone is sufficient to answer the question.
 Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.

(c) [2 pts] Given the above neural network, what is the value of oj1?

Data item 1: the values of all weights connecting neurons h1, h2, h3 to j1, j2
Data item 2: the values oh1

, oh2
, oh3

# Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
# Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
 Both statements taken together are sufficient, but neither data item alone is sufficient.
# Each data item alone is sufficient to answer the question.
# Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.
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(d) [2 pts] Given the above neural network, what is the value of ∂oy/∂wj2,y?

Data item 1: the value of oj2
Data item 2: all weights in the network and the neuron input values, i.e., ox1

through ox4

# Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
# Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
# Both statements taken together are sufficient, but neither data item alone is sufficient.
 Each data item alone is sufficient to answer the question.
# Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.

(e) [2 pts] Given the above neural network, what is the value of ∂oy/∂wh2,j2?

Data item 1: the value of wj2,y
Data item 2: the value of ∂oj2/∂wh2,j2

# Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
# Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
 Both statements taken together are sufficient, but neither data item alone is sufficient.
# Each data item alone is sufficient to answer the question.
# Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.

(f) [2 pts] Given the above neural network, what is the value of ∂oy/∂wx1,h3?

Data item 1: the value of all weights in the network and the neuron input values, i.e., ox1
through ox4

Data item 2: the value of wx1,h3

 Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
# Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
# Both statements taken together are sufficient, but neither data item alone is sufficient.
# Each data item alone is sufficient to answer the question.
# Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.
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Q8. [13 pts] Naive Bayes: Pacman or Ghost?
You are standing by an exit as either Pacmen or ghosts come out of it. Every time someone comes out, you get
two observations: a visual one and an auditory one, denoted by the random variables Xv and Xa, respectively. The
visual observation informs you that the individual is either a Pacman (Xv = 1) or a ghost (Xv = 0). The auditory
observation Xa is defined analogously. Your observations are a noisy measurement of the individual’s true type,
which is denoted by Y . After the indiviual comes out, you find out what they really are: either a Pacman (Y = 1)
or a ghost (Y = 0). You have logged your observations and the true types of the first 20 individuals:

individual i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

first observation X
(i)
v 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0

second observation X
(i)
a 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

individual’s type Y (i) 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

The superscript (i) denotes that the datum is the ith one. Now, the individual with i = 20 comes out, and you want

to predict the individual’s type Y (20) given that you observed X
(20)
v = 1 and X

(20)
a = 1.

(a) Assume that the types are independent, and that the observations are independent conditioned on the type.

You can model this using näıve Bayes, with X
(i)
v and X

(i)
a as the features and Y (i) as the labels. Assume the

probability distributions take on the following form:

P (X(i)
v = xv|Y (i) = y) =

{
pv if xv = y

1− pv if xv 6= y

P (X(i)
a = xa|Y (i) = y) =

{
pa if xa = y

1− pa if xa 6= y

P (Y (i) = 1) = q

for pv, pa, q ∈ [0, 1] and i ∈ N.

X
(i)
v X

(i)
a

Y (i)

(i) [3 pts] What’s the maximum likelihood estimate of pv, pa and q?

pv = 4
5 pa = 3

5 q = 1
2

To estimate q, we count 10 Y = 1 and 10 Y = 0 in the data. For pv, we have pv = 8/10 cases where
Xv = 1 given Y = 1 and 1 − pv = 2/10 cases where Xv = 1 given Y = 0. So pv = 4/5. For pa, we have
pa = 2/10 cases where Xa = 1 given Y = 1 and 1 − pv = 0/10 cases where Xv = 1 given Y = 0. The
average of 2/10 and 1 is 3/5.

(ii) [3 pts] What is the probability that the next individual is Pacman given your observations? Express your
answer in terms of the parameters pv, pa and q (you might not need all of them).

P (Y (20) = 1|X(20)
v = 1, X

(20)
a = 1) = pvpaq

pvpaq+(1−pv)(1−pa)(1−q)

The joint distribution P (Y = 1, Xv = 1, Xa = 1) = pvpaq. For the denominator, we need to sum out over
Y , that is, we need P (Y = 1, Xv = 1, Xa = 1) + P (Y = 0, Xv = 1, Xa = 1).

24



Now, assume that you are given additional information: you are told that the individuals are actually coming out
of a bus that just arrived, and each bus carries exactly 9 individuals. Unlike before, the types of every 9 consecutive
individuals are conditionally independent given the bus type, which is denoted by Z. Only after all of the 9 individuals
have walked out, you find out the bus type: one that carries mostly Pacmans (Z = 1) or one that carries mostly
ghosts (Z = 0). Thus, you only know the bus type in which the first 18 individuals came in:

individual i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

first observation X
(i)
v 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0

second observation X
(i)
a 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

individual’s type Y (i) 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

bus j 0 1

bus type Z(j) 0 1

(b) You can model this using a variant of näıve bayes, where now 9 consecutive labels Y (i), . . . , Y (i+8) are condition-
ally independent given the bus type Z(j), for bus j and individual i = 9j. Assume the probability distributions
take on the following form:

P (X(i)
v = xv|Y (i) = y) =

{
pv if xv = y

1− pv if xv 6= y

P (X(i)
a = xa|Y (i) = y) =

{
pa if xa = y

1− pa if xa 6= y

P (Y (i) = 1|Z(j) = z) =

{
q0 if z = 0

q1 if z = 1

P (Z(j) = 1) = r

for p, q0, q1, r ∈ [0, 1] and i, j ∈ N.

X
(i)
v X

(i)
a

Y (i)

X
(i+1)
v X

(i+1)
a

Y (i+1)

. . .

. . .

X
(i+8)
v X

(i+8)
a

Y (i+8)

Z(j)

(i) [3 pts] What’s the maximum likelihood estimate of q0, q1 and r?

q0 = 2
9 q1 = 8

9 r = 1
2

For r, we’ve seen one ghost bus and one pacman bus, so r = 1/2. For q0, we’re finding P (Y = 1|Z = 0),
which is 2/9. For q1, we’re finding P (Y = 1|Z = 1), which is 8/9.
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(ii) [4 pts] Compute the following joint probability. Simplify your answer as much as possible and express it
in terms of the parameters pv, pa, q0, q1 and r (you might not need all of them).

P (Y (20) = 1, X
(20)
v = 1, X

(20)
a = 1, Y (19) = 1, Y (18) = 1) = papv[q

3
0(1− r) + q31r]

P (Y (20) = 1, X(20)
v = 1, X(20)

a = 1, Y (19) = 1, Y (18) = 1)

=
∑
z

P (Y (20) = 1|Z(2) = z)P (Z(2) = z)P (X(20)
v = 1|Y (20) = 1)P (X(20)

a = 1|Y (20) = 1)

P (Y (19) = 1|Z(2) = z)P (Y (18) = 1|Z(2) = z)

= q0(1− r)papvq0q0 + q1rpapvq1q1

= papv[q
3
0(1− r) + q31r]
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