
CS 188
Fall 2020 Regular Discussion 4
The preamble is an abbreviation of the lecture notes

Markov Decision Processes
A Markov Decision Process is defined by several properties:

• A set of states S

• A set of actions A.

• A start state.

• Possibly one or more terminal states.

• Possibly a discount factor γ.

• A transition function T (s, a, s′).

• A reward function R(s, a, s′).

The Bellman Equation
• V ∗(s) – the optimal value of s is the expected value of the utility an optimally-behaving agent that starts

in s will receive, over the rest of the agent’s lifetime.

• Q∗(s, a) - the optimal value of (s, a) is the expected value of the utility an agent receives after starting in
s, taking a, and acting optimally henceforth.

Using these two new quantities and the other MDP quantities discussed earlier, the Bellman equation is defined
as follows:

V ∗(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

We can also define he equation for the optimal value of a q-state (more commonly known as an optimal q-value):

Q∗(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

which allows us to reexpress the Bellman equation as

V ∗(s) = max
a

Q∗(s, a).

1



Value Iteration
The time-limited value for a state s with a time-limit of k timesteps is denoted Vk(s), and represents the
maximum expected utility attainable from s given that the Markov decision process under consideration ter-
minates in k timesteps. Equivalently, this is what a depth-k expectimax run on the search tree for a MDP
returns.

Value iteration is a dynamic programming algorithm that uses an iteratively longer time limit to compute
time-limited values until convergence (that is, until the V values are the same for each state as they were in the
past iteration: ∀s, Vk+1(s) = Vk(s)). It operates as follows:

1. ∀s ∈ S, initialize V0(s) = 0. This should be intuitive, since setting a time limit of 0 timesteps means no
actions can be taken before termination, and so no rewards can be acquired.

2. Repeat the following update rule until convergence:

∀s ∈ S, Vk+1(s)← max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γVk(s′)]

At iteration k of value iteration, we use the time-limited values for with limit k for each state to generate
the time-limited values with limit (k + 1). In essence, we use computed solutions to subproblems (all the
Vk(s)) to iteratively build up solutions to larger subproblems (all the Vk+1(s)); this is what makes value
iteration a dynamic programming algorithm.

2



1 MDPs: Micro-Blackjack
In micro-blackjack, you repeatedly draw a card (with replacement) that is equally likely to be a 2, 3, or 4. You
can either Draw or Stop if the total score of the cards you have drawn is less than 6. If your total score is 6 or
higher, the game ends, and you receive a utility of 0. When you Stop, your utility is equal to your total score
(up to 5), and the game ends. When you Draw, you receive no utility. There is no discount (γ = 1). Let’s
formulate this problem as an MDP with the following states: 0, 2, 3, 4, 5 and a Done state, for when the game
ends.

(a) What is the transition function and the reward function for this MDP?

(b) Fill in the following table of value iteration values for the first 4 iterations.

States 0 2 3 4 5
V0
V1
V2
V3
V4

(c) You should have noticed that value iteration converged above. What is the optimal policy for the MDP?

States 0 2 3 4 5
π∗

(d) Perform one iteration of policy iteration for one step of this MDP, starting from the fixed policy below:

States 0 2 3 4 5
πi Draw Stop Draw Stop Draw
V πi

πi+1

3



2 MDPs: Grid-World Water Park

Consider the MDP drawn below. The state space consists of all squares in a grid-world water park. There is
a single waterslide that is composed of two ladder squares and two slide squares (marked with vertical bars
and squiggly lines respectively). An agent in this water park can move from any square to any neighboring
square, unless the current square is a slide in which case it must move forward one square along the slide. The
actions are denoted by arrows between squares on the map and all deterministically move the agent in the given
direction. The agent cannot stand still: it must move on each time step. Rewards are also shown below: the
agent feels great pleasure as it slides down the water slide (+2), a certain amount of discomfort as it climbs the
rungs of the ladder (-1), and receives rewards of 0 otherwise. The time horizon is infinite; this MDP goes on
forever.

(a) How many (deterministic) policies π are possible for this MDP?

(b) Fill in the blank cells of this table with values that are correct for the corresponding function, discount,
and state. Hint: You should not need to do substantial calculation here.

γ s = A s = E

V ∗3 (s) 1.0

V ∗10(s) 1.0

V ∗10(s) 0.1

Q∗1(s,west) 1.0 ——

Q∗10(s,west) 1.0 ——

V ∗(s) 1.0

V ∗(s) 0.1

4



Use this labeling of the state space to complete the remaining subproblems:

(c) Fill in the blank cells of this table with the Q-values that result from applying the Q-update for the
transition specified on each row. You may leave Q-values that are unaffected by the current update blank.
Use discount γ = 1.0 and learning rate α = 0.5. Assume all Q-values are initialized to 0. (Note: the
specified transitions would not arise from a single episode.)

Q(D,west) Q(D, east) Q(E,west) Q(E, east)
Initial: 0 0 0 0
Transition 1: (s = D, a = east, r = −1, s′ = E)

Transition 2: (s = E, a = east, r = +2, s′ = F )

Transition 3: (s = E, a = west, r = 0, s′ = D)

Transition 4: (s = D, a = east, r = −1, s′ = E)

The agent is still at the water park MDP, but now we’re going to use function approximation to represent
Q-values. Recall that a policy π is greedy with respect to a set of Q-values as long as ∀a, s Q(s, π(s)) ≥ Q(s, a)
(so ties may be broken in any way).

5



For the next subproblem, consider the following feature functions:

f(s, a) =

{
1 if a = east,

0 otherwise.

f ′(s, a) =

{
1 if (a = east) ∧ isSlide(s),

0 otherwise.

(Note: isSlide(s) is true iff the state s is a slide square, i.e. either F or G.)

Also consider the following policies:

(d) Which are greedy policies with respect to the Q-value approximation function obtained by running the
single Q-update for the transition (s = F, a = east, r = +2, s′ = G) while using the specified feature
function? You may assume that all feature weights are zero before the update. Use discount γ = 1.0 and
learning rate α = 1.0. Circle all that apply.

f π1 π2 π3

f ′ π1 π2 π3

6


