Reinforcement Learning
Double Bandits
Double-Bandit MDP

- Actions: Blue, Red
- States: Win, Lose

No discount
10 time steps
Both states have the same value
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>15</td>
</tr>
<tr>
<td>Play Blue</td>
<td>10</td>
</tr>
</tbody>
</table>

No discount
10 time steps
Both states have the same value
Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0
Online Planning

- Rules changed! Red’s win chance is different.
Let’s Play!

$1 $1 $1

$0 $0 $0 $2
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)

- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Initial

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
The Crawler!
Video of Demo Crawler Bot
DeepMind Atari (©Two Minute Lectures)
Still assume a Markov decision process (MDP):
- A set of states $s \in S$
- A set of actions (per state) A
- A model $T(s,a,s')$
- A reward function $R(s,a,s')$

Still looking for a policy $\pi(s)$

New twist: don’t know T or R
- I.e. we don’t know which states are good or what the actions do
- Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Passive Reinforcement Learning
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Assume: $\gamma = 1$

<table>
<thead>
<tr>
<th>Input Policy π</th>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
</table>
| \[\begin{array}{c|c|c|c|c}
 A & B & C & D \\
 \hline
 B & & C & D \\
 \hline
 E & & & \\
\end{array} \] | | |

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

$T(s, a, s')$
- $T(B, east, C) = 1.00$
- $T(C, east, D) = 0.75$
- $T(C, east, A) = 0.25$
- ...

$R(s, a, s')$
- $R(B, east, C) = -1$
- $R(C, east, D) = -1$
- $R(D, exit, x) = +10$
- ...

$\hat{T}(s, a, s')$
- $\hat{T}(B, east, C) = 1.00$
- $\hat{T}(C, east, D) = 0.75$
- $\hat{T}(C, east, A) = 0.25$
- ...

$\hat{R}(s, a, s')$
- $\hat{R}(B, east, C) = -1$
- $\hat{R}(C, east, D) = -1$
- $\hat{R}(D, exit, x) = +10$
- ...
Analogy: Expected Age

Goal: Compute expected age of cs188 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots$</td>
</tr>
</tbody>
</table>

Without P(A), instead collect samples $[a_1, a_2, \ldots a_N]$

Unknown P(A): “Model Based”

$\hat{P}(a) = \frac{\text{num}(a)}{N}$

$E[A] \approx \sum_a \hat{P}(a) \cdot a$

Unknown P(A): “Model Free”

$E[A] \approx \frac{1}{N} \sum_i a_i$

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - **Input:** a fixed policy \(\pi(s) \)
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - **Goal:** learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- **Goal:** Compute values for each state under π

- **Idea:** Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

If B and E both go to C under this policy, how can their values be different?
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$
$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$
$$\vdots$$
$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$
Temporal Difference Learning

- **Big idea:** learn from every experience!
 - Update \(V(s) \) each time we experience a transition \((s, a, s', r)\)
 - Likely outcomes \(s' \) will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

\[
\text{Sample of } V(s): \quad \text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')
\]

\[
\text{Update to } V(s): \quad V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + (\alpha) \text{sample}
\]

\[
\text{Same update:} \quad V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s))
\]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:
 \[\pi(s) = \arg \max_a Q(s, a) \]
 \[Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \]
- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 no longer policy evaluation!
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)\text{[sample]} \]
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Active Reinforcement Learning
Q-Learning:
act according to current optimal (and also explore…)

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Model-Based Learning

Input Policy π

act according to current optimal
also explore!
Discussion: Model-Based vs Model-Free RL