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Probabilistic Models

§ Models describe how (a portion of) the world works

§ Models are always simplifications
§ May not account for every variable
§ May not account for all interactions between variables
§ “All models are wrong; but some are useful.”

– George E. P. Box

§ What do we do with probabilistic models?
§ We (or our agents) need to reason about unknown 

variables, given evidence
§ Example: explanation (diagnostic reasoning)
§ Example: prediction (causal reasoning)
§ Example: value of information



Independence



§ Two variables are independent if:

§ This says that their joint distribution factors into a product two 
simpler distributions

§ Another form:

§ We write: 

§ Independence is a simplifying modeling assumption

§ Empirical joint distributions: at best “close” to independent

§ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

§ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence



Conditional Independence

§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if

P (x|z, y) = P (x, z, y)

P (z, y)
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=
P (x, y|z)P (z)

P (y|z)P (z)
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=
P (x|z)P (y|z)P (z)

P (y|z)P (z)
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Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Conditional Independence and the Chain Rule

§ Chain rule: 

§ Trivial decomposition:

§ With assumption of conditional independence:

§ Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

§ Each sensor depends only
on where the ghost is

§ That means, the two sensors are 
conditionally independent, given the 
ghost position

§ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

§ Givens:
P( +g ) = 0.5
P(  -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  |  -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16

+t +b -g 0.16

+t -b +g 0.24

+t -b -g 0.04

-t +b +g 0.04

-t +b -g 0.24

-t -b +g 0.06

-t -b -g 0.06



Bayes’Nets: Big Picture



Bayes’ Nets: Big Picture

§ Two problems with using full joint distribution tables 
as our probabilistic models:
§ Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
§ Hard to learn (estimate) anything empirically about more 

than a few variables at a time

§ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
§ More properly called graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect 

interactions
§ For about 10 min, we’ll be vague about how these 

interactions are specified



Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Similar to CSP constraints
§ Indicate “direct influence” between variables
§ Formally: encode conditional independence 

(more later)

§ For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

§ N independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

§ Variables:
§ R: It rains
§ T: There is traffic

§ Model 1: independence

§ Why is an agent using model 2 better?

R

T

R

T

§ Model 2: rain causes traffic



Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!



Example: Humans

§ G: human’s goal / human’s reward parameters
§ S: state of the physical world
§ A: human’s action

23

G

S A



Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls



§ Variables
§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity

Example: Traffic II



Bayes’ Net Semantics



Bayes’ Net Semantics

§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node

§ A collection of distributions over X, one for each 
combination of parents’ values

§ CPT: conditional probability table

§ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

§ Example:

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)



Probabilities in BNs

§ Why are we guaranteed that setting

results in a proper joint distribution?  

§ Chain rule (valid for all distributions): 

§ Assume conditional independences: 

à Consequence:

§ Not every BN can represent every joint distribution

§ The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼*1/4 



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)
P(A|B,E)P(E)
P(B)



Example: Traffic

§ Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

§ Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

§ When Bayes’ nets reflect the true causal patterns:
§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to elicit from experts

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Drips
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence


