Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.”
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information
Independence
Independence

- Two variables are *independent* if:

\[\forall x, y : P(x, y) = P(x)P(y) \]

- This says that their joint distribution *factors* into a product two simpler distributions

- Another form:

\[\forall x, y : P(x|y) = P(x) \]

- We write: \(X \perp Y \)

- Independence is a simplifying *modeling assumption*

 - *Empirical* joint distributions: at best “close” to independent

 - What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence?

$P(T)$

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

$P_1(T, W)$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$P_2(T, W)$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$P(W)$

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Example: Independence

- N fair, independent coin flips:

\[
P(X_1) \quad \quad P(X_2) \quad \quad \ldots \quad \quad P(X_n)
\]

<table>
<thead>
<tr>
<th>H</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[
2^n \left\{ P(X_1, X_2, \ldots, X_n) \right\}
\]
Conditional Independence
Conditional Independence

- $P(\text{Toothache, Cavity, Catch})$

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - $P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity})$

- The same independence holds if I don't have a cavity:
 - $P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity})$

- Catch is *conditionally independent* of Toothache given Cavity:
 - $P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity})$

- Equivalent statements:
 - $P(\text{Toothache} \mid \text{Catch, Cavity}) = P(\text{Toothache} \mid \text{Cavity})$
 - $P(\text{Toothache, Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity})$
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z \(X \perp Y \mid Z \)

 if and only if:

 \[
 \forall x, y, z : P(x, y \mid z) = P(x \mid z)P(y \mid z)
 \]

 or, equivalently, if and only if

 \[
 \forall x, y, z : P(x \mid z, y) = P(x \mid z)
 \]
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z

\[X \perp Y \mid Z \]

if and only if:

\[\forall x, y, z : P(x, y \mid z) = P(x \mid z)P(y \mid z) \]

or, equivalently, if and only if

\[\forall x, y, z : P(x \mid z, y) = P(x \mid z) \]

\[P(x \mid z, y) = \frac{P(x, z, y)}{P(z, y)} = \frac{P(x, y \mid z)P(z)}{P(y \mid z)P(z)} = \frac{P(x \mid z)P(y \mid z)P(z)}{P(y \mid z)P(z)} \]
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Conditional Independence and the Chain Rule

- **Chain rule:**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \]

- **Trivial decomposition:**
 \[P(\text{T}rafic, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{T}rafic|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{T}rafic) \]

- **With assumption of conditional independence:**
 \[P(\text{T}rafic, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{T}rafic|\text{Rain})P(\text{Umbrella}|\text{Rain}) \]

- Bayes’ nets / graphical models help us express conditional independence assumptions
- Each sensor depends only on where the ghost is.

- That means, the two sensors are conditionally independent, given the ghost position.

- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top

- Givens:
 \(P(\ +g\) = 0.5 \)
 \(P(\ -g\) = 0.5 \)
 \(P(\ +t\ |\ +g\) = 0.8 \)
 \(P(\ +t\ |\ -g\) = 0.4 \)
 \(P(\ +b\ |\ +g\) = 0.4 \)
 \(P(\ +b\ |\ -g\) = 0.8 \)

\[
P(T,B,G) = P(G) P(T|G) P(B|G)
\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>B</td>
<td>G</td>
<td>P(T,B,G)</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>+b</td>
<td>+g</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>+b</td>
<td>-g</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>-b</td>
<td>+g</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>-b</td>
<td>-g</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+b</td>
<td>+g</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+b</td>
<td>-g</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-b</td>
<td>+g</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-b</td>
<td>-g</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>
Bayes’Nets: Big Picture
Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified
Example Bayes’ Net: Insurance
Graphical Model Notation

- **Nodes**: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs**: interactions
 - Similar to CSP constraints
 - Indicate “direct influence” between variables
 - Formally: encode conditional independence (more later)

- For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- N independent coin flips

\[X_1 \quad X_2 \quad \ldots \quad X_n \]

- No interactions between variables: *absolute independence*
Example: Traffic

- **Variables:**
 - R: It rains
 - T: There is traffic

- **Model 1: independence**

- **Model 2: rain causes traffic**

- Why is an agent using model 2 better?
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Example: Humans

- G: human’s goal / human’s reward parameters
- S: state of the physical world
- A: human’s action
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Example: Traffic II

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity
Bayes’ Net Semantics
Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 - $P(X|a_1 \ldots a_n)$
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[
P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))
\]

- Example:

\[
P(\text{+cavity, +catch, -toothache})
\]

\[
= P(\text{-toothache}|\text{+cavity})P(\text{+catch}|\text{+cavity})P(\text{+cavity})
\]
Probabilities in BNs

- Why are we guaranteed that setting
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
 results in a proper joint distribution?

- Chain rule (valid for all distributions):
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1}) \]

- Assume conditional independences:
 \[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

 \rightarrow Consequence:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.
Example: Traffic

\[P(R) \]

\[
\begin{array}{|c|c|}
\hline
+r & 1/4 \\
-r & 3/4 \\
\hline
\end{array}
\]

\[P(T|R) \]

\[
\begin{array}{|c|c|c|}
\hline
+r & +t & 3/4 \\
-\text{t} & 1/4 \\
-\text{t} & 1/2 \\
\hline
\end{array}
\]

\[
P(+r, -t) = P(+r)P(-t|+r) = \frac{1}{4} \times \frac{1}{4}
\]
Example: Alarm Network

Alarm Network

- **Burglary** (B)
 - P(B) = 0.001
 - P(B) = 0.999

- **Earthquake** (E)
 - P(E) = 0.002
 - P(E) = 0.998

- **Alarm**

- **John calls**

- **Mary calls**

Probabilities

Conditional Probabilities

| A | J | P(J|A) |
|----|----|--------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|----|----|--------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

Joint Probabilities

P(A|B,E)P(E)P(B)P(M|A)P(J|A)
Example: Traffic

Causal direction

$$P(R)$$

<table>
<thead>
<tr>
<th></th>
<th>+r</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>3/4</td>
<td></td>
</tr>
</tbody>
</table>

$$P(T \mid R)$$

<table>
<thead>
<tr>
<th></th>
<th>+r</th>
<th>+t</th>
<th>3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td></td>
<td>+t</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td></td>
<td>-t</td>
<td>1/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-r</th>
<th>+t</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td></td>
<td>+t</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td></td>
<td>-t</td>
<td>1/2</td>
</tr>
</tbody>
</table>

$$P(T, R)$$

<table>
<thead>
<tr>
<th></th>
<th>+r</th>
<th>+t</th>
<th>3/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td></td>
<td>+t</td>
<td></td>
</tr>
<tr>
<td>+r</td>
<td></td>
<td>-t</td>
<td>1/16</td>
</tr>
<tr>
<td>-r</td>
<td></td>
<td>+t</td>
<td>6/16</td>
</tr>
<tr>
<td>-r</td>
<td></td>
<td>-t</td>
<td>6/16</td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- Reverse causality?

\[
\begin{align*}
P(T) & \\
+ t & 9/16 \\
- t & 7/16 \\
\end{align*}
\]

\[
\begin{align*}
P(R | T) & \\
+ t & + r & 1/3 \\
- r & & 2/3 \\
- t & + r & 1/7 \\
+ t & & 6/7 \\
- r & - t & 6/16 \\
- r & - t & 6/16 \\
\end{align*}
\]
Causality?

- **When Bayes’ nets reflect the true causal patterns:**
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- **BNs need not actually be causal**
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- **What do the arrows really mean?**
 - Topology may happen to encode causal structure
 - **Topology really encodes conditional independence**
 \[P(x_i | x_1, \ldots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]