CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Anca Dragan

University of California, Berkeley
[These slides adapted from Dan Klein and Pieter Abbeel]

Constraint Satisfaction Problems

N variables
domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable

What is Search For?

o Assumptions about the world: a single agent, deterministic actions, fully

observed state, discrete state space — | 2
s
L .,‘%.EJ

o Planning: sequences of actions

o The path to the goal is the important thing

o Paths have various costs, depths
o Heuristics give problem-specific guidance

o Identification: assignments to variables
o The goal itself is important, not the path
o All paths at the same depth (for some formulations)
o CSPs are specialized for identification problems

Constraint Satisfaction Problems

Standard search problems:
o State is a “black box”: arbitrary data structure
o Goal test can be any function over states
o Successor function can also be anything

Constraint satisfaction problems (CSPs):
o A special subset of search problems

o State is defined by variables X; with values
from a domain D (sometimes D depends on i)
o Goal test is a set of constraints specifyin

allowable combinations of values for subsets of
variables

Allows useful general-purpose algorithms with
more power than standard search algorithms

O

O

O

O

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have
different colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Constraint Graphs

Example: N-Queens

o Formulation 1:
o Variables: X;;

o Domains: {0, 1}

o Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi.j.k (X;, Xp) € {(0,0),(0,1), (1,0)} X, =
Vi, j, k (X, Xitk i+k) € 1(0,0),(0,1),(1,0)} 1,

Vi, g,k (X5, Xitrj—k) € 1(0,0),(0,1),(1,0)}

Example: N-Queens

o Formulation 2:

@1

o Variables: Q, Q>
| @3

o Domains: {1,2,3,... N} Qa4

o Constraints:

Implicit: Vi,j non-threatening(Q;, Q;)

it (Q1,Q2) € {(1,3),(1,4),...}

Example: Cryptarithmetic

X
o Variables: T Wg
FTUW RO X X5 X3 + T wlo
o Domains: F O UIR
{0,1,2,3,4,5,6,7,8,9} _’
o _Constraints: .
alldiff(F, T, U, W, R,O)J Fr(T) (U) (W) (R) (O
. 04+ O0=R+10-X;

e o o %(5 X2 X1

Example: Sudoku

= Variables:

= Each (open) square
= Domains:

= {1,2,..9}
= Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

O O O O O O O O

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?

Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

&0

Standard Search Formulation

o Standard search formulation of CSPs

o States defined by the values assigned
so far (partial assignments)
o Initial state: the empty assignment, {}

o Successor function: assign a value to an
unassigned variable

o Goal test: the current assignment is
complete and satisfies all constraints

o We'll start with the straightforward,
naive approach, then improve it

Search Methods

o What would BFS do?

{]
[(WA=¢} {(WA=r} ... (NT=g} ...]

[]

][Demo: coloring -- dfs]

Search Methods

o What would BFS do?

o What would DFS do?

o let’s see!

o What problems does naive search have?

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time

o Variable assignments are commutative, so fix ordering -> better branching factor!
o Le., [WA =red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
o lLe. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

A

¢ & &

Video of Demo Coloring — Backtracking

Backtracking Search

function BACKTRACKING-SEARCH(csy
return RECURSIVE-BACKTRACKIN

yTetyrns solution /failure

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLH(VARIABLES|csp], assignment, csp)
ﬁ"or each value in OR.DER.—DOl\--IAIN—VALUES](var, assignment, csp) do
if{value is consistent with assignment|given CONSTRAINTS[csp| then
add {var = valuey to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment

return failure

o Backtracking = DFS + variable-ordering + fail-on-
violation

o What are the choice points?

Improving Backtracking

o General-purpose ideas give huge gains in speed

o Ordering:

o Which variable should be assigned next?
o In what order should its values be tried?

o Filtering: Can we detect inevitable failure early?

Filtering

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

o Filtering: Keep track of domains for unassigned variables and cross off bad
options

o Forward checking: Cross off values that violate a constraint when added to the
existing assignment

WA NT| Q
SA NSW.
Y
WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward
Checking

Filtering: Constraint Propagation

o Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
NT i T Ir I IrE IrE I
‘ A s BN TEEE[EIE[EOE] BN
b] (m [secw] (m

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

o An arc X — Y is consistent iff for every x in the tail there is some y in the head
which could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 B _TEErEErEEr e .

NSW
\Y

. Delete from the tail!
Forward checking?

Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

o A simple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m [T H] -]

v 1\ VV‘

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking
Remember: Delete

e
e

o Can be run as a preprocessor or after each assignment from the taill
o What's the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X,}
local variablesf quecue, 3 queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT- VALUES(.Y;, X)) then
for each X in NEIGHBORS[.X| do
add (X, X;)lto queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X}] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X;]; removed «— true
return removed

o Runtime: O(n2d?3), can be reduced to O(n2d?)
o ... but detecting all possible future problems is NP-hard — why?

Limitations of Arc Consistency

(—

o After enforcing arc

consistency: c.% %

o Can have one solution left

o Can have multiple solutions
left

o Can have no solutions left
(and not know it)

o Arc consistency still runs
inside a backtracking search! [Demos coloring - forward checking]

[Demo: coloring -- arc consistency]

Video of Demo Coloring — Backtracking with Forward
Checking — Complex Graph

Video of Demo Coloring — Backtracking with Arc
Consistency — Complex Graph

