Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[
 P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \\
 = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1})
 \]

- **X, Y independent if and only if:**
 \[\forall x, y : P(x, y) = P(x)P(y) \]

- **X and Y are conditionally independent given Z if and only if:**
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
 \[X \indep Y | Z \]
A Bayes net is an efficient encoding of a probabilistic model of a domain.

Questions we can ask:

- Inference: given a fixed BN, what is \(P(X \mid e) \)?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?
Bayes Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values

\[P(X|a_1 \ldots a_n) \]

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) =
\]

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J |A) |
|----|----|-----|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05|
| -a | -j | 0.95|

| A | M | P(M |A) |
|----|----|-------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

| B | E | A | P(A |B,E) |
|----|----|----|--------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |
\[P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a| +b, -e)P(-j| +a)P(+m| +a) = \]
\[0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7 \]
Size of a Bayes Net

- How big is a joint distribution over N Boolean variables?

 2^N

- How big is an N-node net if nodes have up to k parents?

 $O(N \times 2^{k+1})$

- Both give you the power to calculate

 $P(X_1, X_2, \ldots X_n)$

- BNs: Huge space savings!

- Also easier to elicit local CPTs

- Also faster to answer queries (last lecture!)
Bayes Nets

- Representation
- Probabilistic Inference
 - Conditional Independence
 - Sampling
 - Learning Bayes’ Nets from Data
Conditional Independence

- X and Y are independent if

\[\forall x, y \quad P(x, y) = P(x)P(y) \quad \rightarrow \quad X \perp Y \]

- X and Y are conditionally independent given Z

\[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \rightarrow \quad X \perp Y|Z \]

- (Conditional) independence is a property of a distribution

- Example: \[\text{Alarm} \perp \text{Fire}|\text{Smoke} \]
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

\[P(x_i|x_1 \cdots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

- Beyond above “chain rule → Bayes net” conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph
Example

- Conditional independence assumptions directly from simplifications in chain rule:
 \[
 P(x, y, z, w) = P(x)P(y|x)P(z|x, y)P(w|x, y, z)
 \]
 \[
 P(x|y, \{Z, uY\}) \perp ZP(x)P(y|x)P(z|y)P(w|z)
 \]
- Additional implied conditional independence assumptions?
 \[
 W \perp X|Y
 \]
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

 ![Diagram](X \rightarrow Y \rightarrow Z)

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?
D-separation: Outline
D-separation: Outline

- Study independence properties for triples
 - Why triples?

- Analyze complex cases in terms of member triples

- D-separation: a condition / algorithm for answering such queries
This configuration is a “causal chain”

Guaranteed X independent of Z?

No!

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

In numbers:

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

\[P(+y | +x) = 1, \quad P(-y | -x) = 1, \]
\[P(+z | +y) = 1, \quad P(-z | -y) = 1 \]
Causal Chains

- This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

- Guaranteed X independent of Z given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)}
= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}
= P(z|y)
\]

Yes!

- Evidence along the chain “blocks” the influence
Common Causes

- This configuration is a “common cause”

Guaranteed X independent of Z?

- No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

- Project due causes both forums busy and lab full

In numbers:

$$P(\ +x \mid +y \) = 1, \ P(\ -x \mid -y \) = 1,$$
$$P(\ +z \mid +y \) = 1, \ P(\ -z \mid -y \) = 1$$
This configuration is a “common cause”

Y: Project due

X: Forums busy

Z: Lab full

Guaranteed X and Z independent given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)}
\]

\[
= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}
\]

\[
= P(z|y)
\]

Yes!

Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
- Proof:
 \[
 P(x, y) = \sum P(x, y, z)
 \]
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - (Proved previously)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
The General Case
The General Case

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph

- Any complex example can be broken into repetitions of the three canonical cases
Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph.

- Attempt 1: if two nodes are not connected by any undirected path not blocked by a shaded node, they are conditionally independent.

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Question: Are X and Y conditionally independent given evidence variables \{Z\}?
- Yes, if X and Y “d-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:
- Causal chain A \rightarrow B \rightarrow C where B is unobserved (either direction)
- Common cause A \leftarrow B \rightarrow C where B is unobserved
- Common effect (aka v-structure)
 - A \rightarrow B \leftarrow C where B or one of its descendants is observed

All it takes to block a path is a single inactive segment
D-Separation

- Query: $X_i \perp \!
\!
\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$

- Check all (undirected!) paths between X_i and X_j

 - If one or more active, then independence not guaranteed

 $$X_i \not\!
\!
\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$$

 - Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

 $$X_i \perp \!
\!
\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$$
Example

\[R \perp B \]
\[R \perp B | T \]
\[R \perp B | T' \]

Yes
Example

\[L \perp T' | T \quad \text{Yes} \]
\[L \perp B \quad \text{Yes} \]
\[L \perp B | T \]
\[L \perp B | T' \]
\[L \perp B | T, R \quad \text{Yes} \]
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

 \[T \perp D \]
 \[T \perp D | R \quad \text{Yes} \]
 \[T \perp D | R, S \]
Structure Implications

- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented
Topology Limits Distributions

- Given some graph topology \(G \), only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions (by making use of conditional independences!)
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Bayes Nets

- **Representation**

- **Probabilistic Inference**
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete

- **Conditional Independences**
 - Sampling
 - Learning from data