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Q1. Searching with Heuristics
Consider the A* searching process on the connected undirected graph, with starting node S and the goal node G. Suppose the
cost for each connection edge is always positive. We define ℎ∗(𝑋) as the shortest (optimal) distance to G from a node X.
Answer Questions (a), (b) and (c). You may want to solve Questions (a) and (b) at the same time.

(a) Suppose ℎ is an admissible heuristic, and we conduct A* tree search using heuristic ℎ′ and finally find a solution. Let
𝐶 be the cost of the found path (directed by ℎ′, defined in part (a)) from S to G

(i) Choose one best answer for each condition below.
1. If ℎ′(𝑋) = 1

2ℎ(𝑋) for all Node 𝑋, then  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)

2. If ℎ′(𝑋) = ℎ(𝑋)+ℎ∗(𝑋)
2 for all Node 𝑋, then  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)

3. If ℎ′(𝑋) = ℎ(𝑋) + ℎ∗(𝑋) for all Node 𝑋, then # 𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆)  𝐶 ≥ ℎ∗(𝑆)
4. If we define the set 𝐾(𝑋) for a node 𝑋 as all its neighbor nodes 𝑌 satisfying ℎ∗(𝑋) > ℎ∗(𝑌 ), and the following

always holds

ℎ′(𝑋) ≤
{

min𝑌∈𝐾(𝑋) ℎ′(𝑌 ) − ℎ(𝑌 ) + ℎ(𝑋) if 𝐾(𝑋) ≠ ∅
ℎ(𝑋) if 𝐾(𝑋) = ∅

then,  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
5. If 𝐾 is the same as above, we have

ℎ′(𝑋) =
{

min𝑌∈𝐾(𝑋) ℎ(𝑌 ) + 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) if 𝐾(𝑋) ≠ ∅
ℎ(𝑋) if 𝐾(𝑋) = ∅

where 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) is the cost of the edge connecting 𝑋 and 𝑌 ,
then,  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)

6. If ℎ′(𝑋) = min𝑌∈𝐾(𝑋)+{𝑋} ℎ(𝑌 ) (𝐾 is the same as above),  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
(ii) In which of the conditions above, ℎ′ is still admissible and for sure to dominate ℎ? Check all that apply. Remember

we say ℎ1 dominates ℎ2 when ℎ1(𝑋) ≥ ℎ2(𝑋) holds for all 𝑋. □ 1 ■ 2 □ 3 □ 4 □ 5 □ 6

(b) Suppose ℎ is a consistent heuristic, and we conduct A* graph search using heuristic ℎ′ and finally find a solution.
(i) Answer exactly the same questions for each conditions in Question (a)(i).

1.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆) 2.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
3. # 𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆)  𝐶 ≥ ℎ∗(𝑆) 4.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
5.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆) 6. # 𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆)  𝐶 ≥ ℎ∗(𝑆)

(ii) In which of the conditions above, ℎ′ is still consistent and for sure to dominate ℎ? Check all that apply.
□ 1 ■ 2 □ 3 □ 4 ■ 5 □ 6

Grading for Bubbles: 0.5 pts for a1 a2 a3 a6 b1 b2. 1 pts for a4 a5 b3 b4 b5 b6.
Explanations:
All the 𝐶 > ℎ∗(𝑆) can be ruled out by this counter example: there exists only one path from S to G.
Now for any 𝐶 = ℎ∗(𝑆) we shall provide a proof. For any 𝐶 ≥ ℎ∗(𝑆) we shall provide a counter example.
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a3b3 - Counter example: SAG fully connected. cost: SG=10, SA=1, AG=7. h*: S=8, A=7, G=0. h: S=8, A=7, G=0.
h’: S=16, A=14, G=0.
a4 - Proof: via induction. We can have an ordering of the nodes {𝑋𝑗}𝑛𝑗=1 such that ℎ∗(𝑋𝑖) ≥ ℎ∗(𝑋𝑗) if 𝑖 < 𝑗. Note any
𝑋𝑘 ∈ 𝐾(𝑋𝑗) has 𝑘 > 𝑗.
𝑋𝑛 is G, and has ℎ′(𝑋𝑛) ≤ ℎ(𝑋𝑛).
Now for 𝑗, suppose ℎ′(𝑋𝑘) ≤ ℎ(𝑋𝑘) for any 𝑘 > 𝑗 holds, we can have ℎ′(𝑋𝑗) ≤ ℎ′(𝑋𝑘) − ℎ(𝑋𝑘) + ℎ(𝑋𝑗) ≤ ℎ(𝑋𝑗)(𝐾(𝑋𝑗) = ∅ also get the result).
b4 - Proof: from a4 we already know that ℎ′ is admissible.
Now for each edge 𝑋𝑌 , suppose ℎ∗(𝑋) ≥ ℎ∗(𝑌 ), we always have ℎ′(𝑋) ≤ ℎ′(𝑌 ) − ℎ(𝑌 ) + ℎ(𝑋), which means ℎ′(𝑋) −
ℎ′(𝑌 ) ≤ ℎ(𝑋) − ℎ(𝑌 ) ≤ 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ), which means we always underestimate the cost of each edge from the potential
optimal path direction. Note h’ is not necessarily to be consistent (ℎ′(𝑌 ) − ℎ′(𝑋) might be very large, e.g. you can
arbitrarily modify h’(S) to be super small), but it always comes with optimality.
a5 - Proof: the empty K path: ℎ′(𝑋) ≤ ℎ(𝑋) ≤ ℎ∗(𝑋). the non-empty K path: there always exists a 𝑌0 ∈ 𝐾(𝑋) such that
𝑌0 is on the optimal path from 𝑋 to 𝐺. We know 𝑐𝑜𝑠𝑡(𝑋, 𝑌0) = ℎ∗(𝑋)−ℎ∗(𝑌0), so we have ℎ′(𝑋) ≤ ℎ(𝑌0)+𝑐𝑜𝑠𝑡(𝑋, 𝑌0) ≤
ℎ∗(𝑌0) + 𝑐𝑜𝑠𝑡(𝑋, 𝑌0) = ℎ∗(𝑋).
b5 - Proof:
First we prove ℎ′(𝑋) ≥ ℎ(𝑋). For any edge 𝑋𝑌 , we have ℎ(𝑋)−ℎ(𝑌 ) ≤ 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ). So we can have ℎ(𝑌 )+𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) ≥
ℎ(𝑋) holds for any edge, and hence we get the dominace of ℎ′ over ℎ. Note this holds only for consistent ℎ.
We then have ℎ′(𝑋) − ℎ′(𝑌 ) ≤ ℎ(𝑌 ) + 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) − ℎ′(𝑌 ) ≤ 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ). So we get the consistency of ℎ′.
Extension Conclusion 1: If we change K(X) into {all neighbouring nodes of X} + {X}, h’ did not change.
Extension Conclusion 2: h’ dominates h, which is a better heuristics. This (looking one step ahead with h’) is equivalent
to looking two steps ahead in the A* search with h (while the vanilla A* search is just looking one step ahead with h).
a6 - Proof: ℎ′(𝑋) ≤ ℎ(𝑋) ≤ ℎ∗(𝑋).
b6 - counter example: SAB fully connected, BG connected. cost: SA=8, AB=1, SB=10, BG=30. h*: A=31, B=30 G=0.
h=h*. h’: A=30, B=0, C=0.
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(c) Suppose ℎ is an admissible heuristic, and we conduct A* tree search using heuristic ℎ′ and finally find a solution.
If 𝜖 > 0, and 𝑋0 is a node in the graph, and ℎ′ is a heuristic such that

ℎ′(𝑋) =
{

ℎ(𝑋) if 𝑋 = 𝑋0
ℎ(𝑋) + 𝜖 otherwise

• Alice claims ℎ′ can be inadmissible, and hence 𝐶 = ℎ∗(𝑆) does not always hold.
• Bob instead thinks the node expansion order directed by ℎ′ is the same as the heuristic ℎ′′, where

ℎ′′(𝑋) =
{

ℎ(𝑋) − 𝜖 if 𝑋 = 𝑋0
ℎ(𝑋) if otherwise

Since ℎ′′ is admissible and will lead to 𝐶 = ℎ∗(𝑆), and so does ℎ′. Hence, 𝐶 = ℎ∗(𝑆) always holds.
The two conclusions (underlined) apparently contradict with each other, and only exactly one of them are correct and
the other is wrong. Choose the best explanation from below - which student’s conclusion is wrong, and why are they
wrong?
# Alice’s conclusion is wrong, because the heuristic ℎ′ is always admissible.
# Alice’s conclusion is wrong, because an inadmissible heuristics does not necessarily always lead to the failure of the
optimality when conducting A* tree search.
# Alice’s conclusion is wrong, because of another reason that is not listed above.
# Bob’s conclusion is wrong, because the node visiting expansion ordering of ℎ′′ during searching might not be the

same as ℎ′.
# Bob’s conclusion is wrong, because the heuristic ℎ′′ might lead to an incomplete search, regardless of its optimally

property.
 Bob’s conclusion is wrong, because of another reason that is not listed above.

Choice 4 is incorrect, because the difference betweenℎ′ andℎ′′ is a constant. During searching, the choice of the expansion
of the fringe will not be affected if all the nodes add the same constant to the heuristics.
Choice 5 is incorrect because there will never be an infinite loop if there are no cycle has negative COST sum (rather
than HEURISTICS). If there is a cycle, such that its COST sum is positive, and all the nodes in the cycle have negative
heuristics, when we do g+h, g is getting larger and larger, while h remains a not-that-large negative value. Soon, the
search algorithm will be favoring other paths even if the h in there are not negative.
The true reason: ℎ′′ violate a property of admissible heuristic. Since ℎ is admissible, we have ℎ(𝐺) = 0. If 𝑋0 = 𝐺, we
have a negative heuristic value at ℎ′′(𝐺), and it is no longer admissible. If 𝑋0 ≠ 𝐺, then it is indeed that the optimality
holds - the only change is that more nodes will be likely to be expanded for ℎ′ and ℎ′′ compared to ℎ.
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Q2. CSPs
In this question, you are trying to find a four-digit number satisfying the following conditions:

1. the number is odd,
2. the number only contains the digits 1, 2, 3, 4, and 5,
3. each digit (except the leftmost) is strictly larger than the digit to its left.

(a) CSPs
We will model this as a CSP where the variables are the four digits of our number, and the domains are the five digits we
can choose from. The last variable only has 1, 3, and 5 in its domain since the number must be odd. The constraints are
defined to reflect the third condition above. Thus before we start executing any algorithms, the domains are

(i) Before assigning anything, enforce arc consistency. Write the values remaining in the domain of each variable after
arc consistency is enforced.

(ii) With the domains you wrote in the previous part, which variable will the MRV (Minimum Remaining Value) heuris-
tic choose to assign a value to first? If there is a tie, choose the leftmost variable.
# The first digit (leftmost)
# The second digit
# The third digit
 The fourth digit (rightmost)

(iii) Now suppose we assign to the leftmost digit first. Assuming we will continue filtering by enforcing arc consistency,
which value will LCV (Least Constraining Value) choose to assign to the leftmost digit? Break ties from large (5)
to small (1).

■ 1
□ 2
□ 3
□ 4
□ 5

(iv) Now suppose we are running min-conflicts to try to solve this CSP. If we start with the number 1332, what will our
number be after one interation of min-conflicts? Break variable selection ties from left to right, and break value
selection ties from small (1) to large (5).

1232
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(b) The following questions are completely unrelated to the above parts. Assume for these following questions, there are only
binary constraints unless otherwise specified.

(i) [true or false] When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates
does not depend on the order in which arcs are processed from the queue.

(ii) [true or false] Once arc consistency is enforced as a pre-processing step, forward checking can be used during
backtracking search to maintain arc consistency for all variables.
False. Forward checking makes the current variable arc-consistent, but doesn?t look ahead and make all the other
variables arc-consistent.

(iii) In a general CSP with 𝑛 variables, each taking 𝑑 possible values, what is the worst case time complexity of enforcing
arc consistency using the AC-3 method discussed in class?
# 0 # 𝑂(1) # 𝑂(𝑛𝑑2)  𝑂(𝑛2𝑑3) # 𝑂(𝑑𝑛) # ∞
𝑂(𝑛2𝑑3). There are up to 𝑛2 constraints. There are 𝑑2 comparisons for enforcing arc consistency per each constraint,
and each constraint can be inserted to the queue up to 𝑑 times because each variable has at most 𝑑 values to delete.

(iv) In a general CSP with 𝑛 variables, each taking 𝑑 possible values, what is the maximum number of times a back-
tracking search algorithm might have to backtrack (i.e. the number of the times it generates an assignment, partial
or complete, that violates the constraints) before finding a solution or concluding that none exists?
# 0 # 𝑂(1) # 𝑂(𝑛𝑑2) # 𝑂(𝑛2𝑑3)  𝑂(𝑑𝑛) # ∞
𝑂(𝑑𝑛). In general, the search might have to examine all possible assignments.

(v) What is the maximum number of times a backtracking search algorithm might have to backtrack in a general CSP,
if it is running arc consistency and applying the MRV and LCV heuristics?
# 0 # 𝑂(1) # 𝑂(𝑛𝑑2) # 𝑂(𝑛2𝑑3)  𝑂(𝑑𝑛) # ∞
𝑂(𝑑𝑛). The MRV and LCV heuristics are often helpful to guide the search, but are not guaranteed to reduce back-
tracking in the worst case.
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