
CS 188
Fall 2022 Regular Discussion 2 Solutions

1 Search and Heuristics
Imagine a car-like agent wishes to exit a maze like the one shown below:

The agent is directional and at all times faces some direction d ∈ (N,S,E,W ). With a single action, the agent
can either move forward at an adjustable velocity v or turn. The turning actions are left and right, which change
the agent’s direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it at zero).
The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity by
1; in both cases the agent then moves a number of squares equal to its NEW adjusted velocity (see example
below). A consequence of this formulation is that it is impossible for the agent to move in the same nonzero
velocity for two consecutive timesteps. Any action that would result in a collision with a wall crashes the agent
and is illegal. Any action that would reduce v below 0 or above a maximum speed Vmax is also illegal. The
agent’s goal is to find a plan which parks it (stationary) on the exit square using as few actions (time steps) as
possible.

As an example: if at timestep t the agent’s current velocity is 2, by taking the fast action, the agent first
increases the velocity to 3 and move 3 squares forward, such that at timestep t+ 1 the agent’s current velocity
will be 3 and will be 3 squares away from where it was at timestep t. If instead the agent takes the slow action,
it first decreases its velocity to 1 and then moves 1 square forward, such that at timestep t + 1 the agent’s
current velocity will be 1 and will be 1 squares away from where it was at timestep t. If, with an instantaneous
velocity of 1 at timestep t+ 1, it takes the slow action again, the agent’s current velocity will become 0, and it
will not move at timestep t+ 1. Then at timestep t+ 2, it will be free to turn if it wishes. Note that the agent
could not have turned at timestep t+ 1 when it had a current velocity of 1, because it has to be stationary to
turn.

(a) If the grid is M by N , what is the size of the state space? Justify your answer. You should assume that
all configurations are reachable from the start state.

The size of the state space is 4MN(Vmax + 1). The state representation is (direction facing, x, y, speed).
Note that the speed can take any value in {0, ..., Vmax}.

1



(b) Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or why not?

No, Manhattan distance is not an admissible heuristic. The agent can move at an average speed of greater
than 1 (by first speeding up to Vmax and then slowing down to 0 as it reaches the goal), and so can reach
the goal in less time steps than there are squares between it and the goal. A specific example: A timestep
0, the agent’s starts stationary at square 0 and the target is 9 squares away at square 9. At timestep 0,
the agent takes the fast action and ends up at square 1 with a velocity of 1. At timestep 1, the agent
takes the fast action and ends up at square 3 with a velocity of 2. At timestep 2, the agent takes the fast
action and ends up at square 6 with a velocity of 3. At timestep 3, the agent takes the slow action and
ends up at square 8 with a velocity of 2. At timestep 4, the agent takes the slow action and ends up at
square 9 with a velocity of 1. At timestep 5, the agent takes the slow action and stays at square 9 with a
velocity of 0. Therefore, the agent can move 9 squares by taking 6 actions.

2



(c) State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan distance
to the exit.

There are many answers to this question. Here are a few, in order of weakest to strongest:

(a) The number of turns required for the agent to face the goal.

(b) Consider a relaxation of the problem where there are no walls, the agent can turn, change speed
arbitrarily, and maintain constant velocity. In this relaxed problem, the agent would move with
Vmax, and then suddenly stop at the goal, thus taking dmanhattan/Vmax time.

(c) We can improve the above relaxation by accounting for the acceleration and deceleration dynamics.
In this case the agent will have to accelerate from 0 from the start state, maintain a constant velocity
of Vmax, and slow down to 0 when it is about to reach the goal. Note that this heuristic will always
return a greater value than the previous one, but is still not an overestimate of the true cost to reach
the goal. We can say that this heuristic dominates the previous one.

In particular, let us assume that dmanhattan is greater than and equal to the distance it takes to
accelerate to and decelerate from Vmax (In the case that dmanhattan is smaller than this distance,
we can still use dmanhattan/Vmax as a heuristic). We can break up the dmanhattan into three parts:
daccel, dVmax , and ddecel. The agent travels a distance of daccel when it accelerates from 0 to Vmax

velocity. The agent travels a distance of ddecel when it decelerates from Vmax to 0 velocity. In between
acceleration and deceleration, the agent travels a distance of dVmax

= dmanhattan − daccel − ddecel.

daccel = 1 + 2 + 3 + Vmax = (Vmax)(Vmax+1)
2 and ddecel = (Vmax − 1) + (Vmax − 2) + ... + 1 + 0 =

(Vmax)(Vmax−1)
2 . So dVmax

= dmanhattan − (Vmax)(Vmax+1)
2 − (Vmax)(Vmax−1)

2 = dmanhattan − V 2
max. It

takes Vmax steps to travel the initial daccel,
dmanhattan−V 2

max

Vmax
steps to travel the middle dVmax and

Vmax steps to travel the last ddecel. Therefore, our heuristic is{
dmanhattan

Vmax
, if dmanhattan ≤ V 2

max = daccel + ddecel
dmanhattan

Vmax
+ Vmax, if dmanhattan > V 2

max = daccel + ddecel

(d) If we used an inadmissible heuristic in A* graph search, would the search be complete? Would it be
optimal?

If the heuristic function is bounded, then A* graph search would visit all the nodes eventually, and would
find a path to the goal state if there exists one. An inadmissible heuristic does not guarantee optimality
as it can make the good optimal goal look as though it is very far off, and take you to a suboptimal goal.

(e) If we used an admissible heuristic in A* graph search, is it guaranteed to return an optimal solution?
What if the heuristic was consistent? What if we were using A* tree search instead of A* graph search?

Although admissible heuristics guarantee optimality for A* tree search, they do not necessarily guarantee
optimality for A* graph search; they are only guaranteed to return an optimal solution if they are consistent
as well.

(f) When might we want to use an inadmissible heuristic over an admissible heuristic?

The time to solve an A* search problem is a function of two factors: the number of nodes expanded, and
the time spent per node. An inadmissible heuristic may be faster to compute, leading to a solution that
is obtained faster due to less time spent per node. It can also be a closer estimate to the actual cost
function (even though at times it will overestimate!), thus expanding less nodes. We lose the guarantee of
optimality by using an inadmissible heuristic. But sometimes we may be okay with finding a suboptimal
solution to a search problem.

3



CSPs
CSPs are defined by three factors:

1. Variables - CSPs possess a set of N variables X1, ..., XN that can each take on a single value from some
defined set of values.

2. Domain - A set {x1, ..., xd} representing all possible values that a CSP variable can take on.

3. Constraints - Constraints define restrictions on the values of variables, potentially with regard to other
variables.

CSPs are often represented as constraint graphs, where nodes represent variables and edges represent constraints
between them.

• Unary Constraints - Unary constraints involve a single variable in the CSP. They are not represented in
constraint graphs, instead simply being used to prune the domain of the variable they constrain when
necessary.

• Binary Constraints - Binary constraints involve two variables. They’re represented in constraint graphs
as traditional graph edges.

• Higher-order Constraints - Constraints involving three or more variables can also be represented with
edges in a CSP graph.

In forward checking, whenever a value is assigned to a variable Xi, forward checking prunes the domains of
unassigned variables that share a constraint with Xi that would violate the constraint if assigned. The idea of
forward checking can be generalized into the principle of arc consistency. For arc consistency, we interpret
each undirected edge of the constraint graph for a CSP as two directed edges pointing in opposite directions.
Each of these directed edges is called an arc. The arc consistency algorithm works as follows:

• Begin by storing all arcs in the constraint graph for the CSP in a queue Q.

• Iteratively remove arcs from Q and enforce the condition that in each removed arc Xi −→ Xj , for every
remaining value v for the tail variable Xi, there is at least one remaining value w for the head variable Xj

such that Xi = v,Xj = w does not violate any constraints. If some value v for Xi would not work with
any of the remaining values for Xj , we remove v from the set of possible values for Xi.

• If at least one value is removed for Xi when enforcing arc consistency for an arc Xi −→ Xj , add arcs of
the form Xk −→ Xi to Q, for all unassigned variables Xk. If an arc Xk −→ Xi is already in Q during this
step, it doesn’t need to be added again.

• Continue until Q is empty, or the domain of some variable is empty and triggers a backtrack.

We’ve delineated that when solving a CSP, we fix some ordering for both the variables and values involved. In
practice, it’s often much more effective to compute the next variable and corresponding value “on the fly” with
two broad principles, minimum remaining values and least constraining value:

• Minimum Remaining Values (MRV) - When selecting which variable to assign next, using an MRV pol-
icy chooses whichever unassigned variable has the fewest valid remaining values (the most constrained
variable).

• Least Constraining Value (LCV) - Similarly, when selecting which value to assign next, a good policy
to implement is to select the value that prunes the fewest values from the domains of the remaining
unassigned variables.

4



2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

1

2

3

4

5

s

W

wS

6

S

s

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

(a) State the binary and/or unary constraints for this CSP (either implicitly or explicitly).
Binary:
X1 = P or X2 = P , X2 = E or X3 = E,
X3 = E or X4 = E, X4 = P or X5 = P ,
X5 = P or X6 = P , X1 = P or X6 = P ,
∀i, j s.t. Adj(i, j) ¬(Xi = E and Xj = E)

Unary:
X2 ̸= P ,
X3 ̸= P ,
X4 ̸= P

Note: This is just one of many solutions. The answers below will be based on this formulation.

(b) Suppose we assign X1 to E. Perform forward
checking after this assignment. Also, enforce
unary constraints.

X1 E

X2

X3 G E

X4 G E

X5 P G E

X6 P

(c) Suppose forward checking returns the following

set of possible assignments:

X1 P

X2 G E
X3 G E
X4 G E
X5 P

X6 P G E

According to MRV, which variable or variables
could the solver assign first?

X1 or X5 (tie breaking)

(d) Assume that Pacman knows that X6 = G. List all the solutions of this CSP or write none if no solutions
exist.

(P,E,G,E,P,G)
(P,G,E,G,P,G)

5


