
CS 188
Fall 2022

Introduction to
Artificial Intelligence Exam Prep 4 Solutions

Q1. MedianMiniMax
You’re living in utopia! Despite living in utopia, you still believe that you need to maximize your utility in life, other people want
to minimize your utility, and the world is a 0 sum game. But because you live in utopia, a benevolent social planner occasionally
steps in and chooses an option that is a compromise. Essentially, the social planner (represented as the pentagon) is a median
node that chooses the successor with median utility. Your struggle with your fellow citizens can be modelled as follows:

There are some nodes that we are sometimes able to prune. In each part, mark all of the terminal nodes such that there exists
a possible situation for which the node can be pruned. In other words, you must consider all possible pruning situations.
Assume that evaluation order is left to right and all 𝑉𝑖’s are distinct.

Note that as long as there exists ANY pruning situation (does not have to be the same situation for every node), you should mark
the node as prunable. Also, alpha-beta pruning does not apply here, simply prune a sub-tree when you can reason that its value
will not affect your final utility.

(a) □ 𝑉1
□ 𝑉2
□ 𝑉3
□ 𝑉4
■ None

(b) □ 𝑉5
■ 𝑉6
■ 𝑉7
■ 𝑉8
□ None

(c) □ 𝑉9
□ 𝑉10
■ 𝑉11
■ 𝑉12
□ None

(d) □ 𝑉13
■ 𝑉14
■ 𝑉15
■ 𝑉16
□ None

1

Part a:
For the left median node with three children, at least two of the childrens’ values must be known since one of them will be
guaranteed to be the value of the median node passed up to the final maximizer. For this reason, none of the nodes in part a can
be pruned.

Part b (pruning 𝑉7, 𝑉8):
Let𝑚𝑖𝑛1, 𝑚𝑖𝑛2, 𝑚𝑖𝑛3 be the values of the three minimizer nodes
in this subtree.

In this case, we may not need to know the final value 𝑚𝑖𝑛3. The
reason for this is that we may be able to put a bound on its value
after exploring only partially, and determine the value of the
median node as either 𝑚𝑖𝑛1 or 𝑚𝑖𝑛2 if 𝑚𝑖𝑛3 ≤ min (𝑚𝑖𝑛1, 𝑚𝑖𝑛2)
or 𝑚𝑖𝑛3 ≥ max (𝑚𝑖𝑛1, 𝑚𝑖𝑛2).

We can put an upper bound on 𝑚𝑖𝑛3 by exploring the left
subtree 𝑉5, 𝑉6 and if max (𝑉5, 𝑉6) is lower than both 𝑚𝑖𝑛1
and 𝑚𝑖𝑛2, the median node’s value is set as the smaller of
𝑚𝑖𝑛1, 𝑚𝑖𝑛2 and we don’t have to explore 𝑉7, 𝑉8 in Figure 1.

Part b (pruning 𝑉6):
It’s possible for us to put a lower bound on 𝑚𝑖𝑛3. If 𝑉5 is larger
than both 𝑚𝑖𝑛1 and 𝑚𝑖𝑛2, we do not need to explore 𝑉6.

The reason for this is subtle, but if the minimizer chooses the
left subtree, we know that 𝑚𝑖𝑛3 ≥ 𝑉5 ≥ max (𝑚𝑖𝑛1, 𝑚𝑖𝑛2) and
we don’t need 𝑉6 to get the correct value for the median node
which will be the larger of 𝑚𝑖𝑛1, 𝑚𝑖𝑛2.

If the minimizer chooses the value of the right subtree, the
value at 𝑉6 is unnecessary again since the minimizer never
chose its subtree.

2

Part c (pruning 𝑉11, 𝑉12):
Assume the highest maximizer node has a current value
𝑚𝑎𝑥1 ≥ 𝑍 set by the left subtree and the three minimizers
on this right subtree have value 𝑚𝑖𝑛1, 𝑚𝑖𝑛2, 𝑚𝑖𝑛3.

In this part, if 𝑚𝑖𝑛1 ≤ max (𝑉9, 𝑉10) ≤ 𝑍, we do not have
to explore 𝑉11, 𝑉12. Once again, the reasoning is subtle, but
we can now realize if either 𝑚𝑖𝑛2 ≤ 𝑍 or 𝑚𝑖𝑛3 ≤ 𝑍 then the
value of the right median node is for sure ≤ 𝑍 and is useless.

Only if both 𝑚𝑖𝑛2, 𝑚𝑖𝑛3 ≥ 𝑍 will the whole right subtree have
an effect on the highest maximizer, but in this case the exact
value of 𝑚𝑖𝑛1 is not needed, just the information that it is ≤ 𝑍.
Clearly in both cases, 𝑉11, 𝑉12 are not needed since an exact
value of 𝑚𝑖𝑛1 is not needed.

We will also take the time to note that if 𝑉9 ≥ 𝑍 we do have
to continue the exploring as 𝑉10 could be even greater and the
final value of the top maximizer, so 𝑉10 can’t really be pruned.

Part d (pruning 𝑉14, 𝑉15, 𝑉16):
Continuing from part c, if we find that𝑚𝑖𝑛1 ≤ 𝑍 and𝑚𝑖𝑛2 ≤ 𝑍
we can stop.

We can realize this as soon we explore 𝑉13. Once we figure
this out, we know that our median node’s value must be one of
these two values, and neither will replace 𝑍 so we can stop.

3

Q2. How do you Value It(eration)?
(a) Fill out the following True/False questions.

(i) True # False: Let 𝐴 be the set of all actions and 𝑆 the set of states for some MDP. Assuming that
|𝐴| ≪ |𝑆|, one iteration of value iteration is generally faster than one iteration of policy iteration that solves a linear
system during policy evaluation. One iteration of value iteration is 𝑂(|𝑆|2|𝐴|), whereas one iteration of policy
iteration is 𝑂(|𝑆|3), so value iteration is generally faster when |𝐴| ≪ |𝑆|

(ii) # True False: For any MDP, changing the discount factor does not affect the optimal policy for the MDP.
Consider an infinite horizon setting where we have 2 states 𝐴,𝐵, where we can alternate between 𝐴 and 𝐵 forever,
gaining a reward of 1 each transition, or exit from 𝐵 with a reward of 100. In the case that 𝛾 = 1, the optimal policy
is to forever oscillate between 𝐴 and 𝐵. If 𝛾 = 1

2 , then it is optimal to exit.

The following problem will take place in various instances of a grid world MDP. Shaded cells represent walls. In all states, the
agent has available actions ↑, ↓, ←, →. Performing an action that would transition to an invalid state (outside the grid or into a
wall) results in the agent remaining in its original state. In states with an arrow coming out, the agent has an additional action
𝐸𝑋𝐼𝑇 . In the event that the 𝐸𝑋𝐼𝑇 action is taken, the agent receives the labeled reward and ends the game in the terminal
state 𝑇 . Unless otherwise stated, all other transitions receive no reward, and all transitions are deterministic.

For all parts of the problem, assume that value iteration begins with all states initialized to zero, i.e., 𝑉0(𝑠) = 0 ∀𝑠. Let
the discount factor be 𝛾 = 1

2 for all following parts.

(b) Suppose that we are performing value iteration on the grid world MDP below.

(i) Fill in the optimal values for A and B in the given boxes.

𝑉 ∗(𝐴) ∶
25

𝑉 ∗(𝐵) ∶

25
8

(ii) After how many iterations 𝑘 will we have 𝑉𝑘(𝑠) = 𝑉 ∗(𝑠) for all states 𝑠? If it never occurs, write “never". Write
your answer in the given box.

6

(iii) Suppose that we wanted to re-design the reward function. For which of the following new reward functions would
the optimal policy remain unchanged? Let 𝑅(𝑠, 𝑎, 𝑠′) be the original reward function.

■ 𝑅1(𝑠, 𝑎, 𝑠′) = 10𝑅(𝑠, 𝑎, 𝑠′)

■ 𝑅2(𝑠, 𝑎, 𝑠′) = 1 +𝑅(𝑠, 𝑎, 𝑠′)

■ 𝑅3(𝑠, 𝑎, 𝑠′) = 𝑅(𝑠, 𝑎, 𝑠′)2

□ 𝑅4(𝑠, 𝑎, 𝑠′) = −1
□ None

𝑅1: Scaling the reward function does not affect the optimal policy, as it scales all Q-values by 10, which retains ordering
𝑅2: Since reward is discounted, the agent would get more reward exiting then infinitely cycling between states

4

𝑅3: The only positive reward remains to be from exiting state +100 and +1, so the optimal policy doesn’t change
𝑅4: With negative reward at every step, the agent would want to exit as soon as possible, which means the agent would
not always exit at the bottom-right square.

(c) For the following problem, we add a new state in which we can take the 𝐸𝑋𝐼𝑇 action with a reward of +𝑥.

(i) For what values of 𝑥 is it guaranteed that our optimal policy 𝜋∗ has 𝜋∗(𝐶) = ←? Write ∞ and −∞ if there is no
upper or lower bound, respectively. Write the upper and lower bounds in each respective box.

50
< x <

∞

We go left if 𝑄(𝐶,←) > 𝑄(𝐶,→). 𝑄(𝐶,←) = 1
8𝑥, and 𝑄(𝐶,→) = 100

16 . Solving for 𝑥, we get 𝑥 > 50.
(ii) For what values of 𝑥 does value iteration take the minimum number of iterations 𝑘 to converge to 𝑉 ∗ for all states?

Write ∞ and −∞ if there is no upper or lower bound, respectively. Write the upper and lower bounds in each re-
spective box.

50 ≤ x ≤ 200

The two states that will take the longest for value iteration to become non-zero from either +𝑥 or +100, are states 𝐶 , and
𝐷, where 𝐷 is defined as the state to the right of 𝐶 . 𝐶 will become nonzero at iteration 4 from +𝑥, and 𝐷 will become
nonzero at iteration 4 from +100. We must bound 𝑥 so that the optimal policy at 𝐷 does not choose to go to +𝑥, or else
value iteration will take 5 iterations. Similar reasoning for 𝐷 and +𝑥. Then our inequalities are 1

8𝑥 ≥ 100
16 and 1

16𝑥 ≤ 100
8 .

Simplifying, we get the following bound on 𝑥: 50 ≤ 𝑥 ≤ 200
(iii) Fill the box with value 𝑘, the minimum number of iterations until 𝑉𝑘 has converged to 𝑉 ∗ for all states.

4

See the explanation for the part above

5

