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Q1. MedianMiniMax
You’re living in utopia! Despite living in utopia, you still believe that you need to maximize your utility in life, other people want
to minimize your utility, and the world is a 0 sum game. But because you live in utopia, a benevolent social planner occasionally
steps in and chooses an option that is a compromise. Essentially, the social planner (represented as the pentagon) is a median
node that chooses the successor with median utility. Your struggle with your fellow citizens can be modelled as follows:

There are some nodes that we are sometimes able to prune. In each part, mark all of the terminal nodes such that there exists
a possible situation for which the node can be pruned. In other words, you must consider all possible pruning situations.
Assume that evaluation order is left to right and all 𝑉𝑖’s are distinct.

Note that as long as there exists ANY pruning situation (does not have to be the same situation for every node), you should mark
the node as prunable. Also, alpha-beta pruning does not apply here, simply prune a sub-tree when you can reason that its value
will not affect your final utility.

(a) □ 𝑉1
□ 𝑉2
□ 𝑉3
□ 𝑉4
□ None

(b) □ 𝑉5
□ 𝑉6
□ 𝑉7
□ 𝑉8
□ None

(c) □ 𝑉9
□ 𝑉10
□ 𝑉11
□ 𝑉12
□ None

(d) □ 𝑉13
□ 𝑉14
□ 𝑉15
□ 𝑉16
□ None
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Q2. How do you Value It(eration)?
(a) Fill out the following True/False questions.

(i) # True # False: Let 𝐴 be the set of all actions and 𝑆 the set of states for some MDP. Assuming that
|𝐴| ≪ |𝑆|, one iteration of value iteration is generally faster than one iteration of policy iteration that solves a linear
system during policy evaluation.

(ii) # True # False: For any MDP, changing the discount factor does not affect the optimal policy for the MDP.

The following problem will take place in various instances of a grid world MDP. Shaded cells represent walls. In all states, the
agent has available actions ↑, ↓, ←, →. Performing an action that would transition to an invalid state (outside the grid or into a
wall) results in the agent remaining in its original state. In states with an arrow coming out, the agent has an additional action
𝐸𝑋𝐼𝑇 . In the event that the 𝐸𝑋𝐼𝑇 action is taken, the agent receives the labeled reward and ends the game in the terminal
state 𝑇 . Unless otherwise stated, all other transitions receive no reward, and all transitions are deterministic.

For all parts of the problem, assume that value iteration begins with all states initialized to zero, i.e., 𝑉0(𝑠) = 0 ∀𝑠. Let
the discount factor be 𝛾 = 1

2 for all following parts.

(b) Suppose that we are performing value iteration on the grid world MDP below.

(i) Fill in the optimal values for A and B in the given boxes.

𝑉 ∗(𝐴) ∶ 𝑉 ∗(𝐵) ∶

(ii) After how many iterations 𝑘 will we have 𝑉𝑘(𝑠) = 𝑉 ∗(𝑠) for all states 𝑠? If it never occurs, write “never". Write
your answer in the given box.

(iii) Suppose that we wanted to re-design the reward function. For which of the following new reward functions would
the optimal policy remain unchanged? Let 𝑅(𝑠, 𝑎, 𝑠′) be the original reward function.

□ 𝑅1(𝑠, 𝑎, 𝑠′) = 10𝑅(𝑠, 𝑎, 𝑠′)

□ 𝑅2(𝑠, 𝑎, 𝑠′) = 1 +𝑅(𝑠, 𝑎, 𝑠′)

□ 𝑅3(𝑠, 𝑎, 𝑠′) = 𝑅(𝑠, 𝑎, 𝑠′)2

□ 𝑅4(𝑠, 𝑎, 𝑠′) = −1

□ None

(c) For the following problem, we add a new state in which we can take the 𝐸𝑋𝐼𝑇 action with a reward of +𝑥.
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(i) For what values of 𝑥 is it guaranteed that our optimal policy 𝜋∗ has 𝜋∗(𝐶) = ←? Write ∞ and −∞ if there is no
upper or lower bound, respectively. Write the upper and lower bounds in each respective box.

< x <
(ii) For what values of 𝑥 does value iteration take the minimum number of iterations 𝑘 to converge to 𝑉 ∗ for all states?

Write ∞ and −∞ if there is no upper or lower bound, respectively. Write the upper and lower bounds in each re-
spective box.

≤ x ≤

(iii) Fill the box with value 𝑘, the minimum number of iterations until 𝑉𝑘 has converged to 𝑉 ∗ for all states.
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