(5 188
Fall 2022 Regular Discussion 4 Solutions

Q1. Game Trees

The following problems are to test your knowledge of Game Trees.

(a) Minimax

The first part is based upon the following tree. Upward triangle nodes are maximizer nodes and downward
are minimizers. (small squares on edges will be used to mark pruned nodes in part (ii))

(i) Complete the game tree shown above by filling in values on the maximizer and minimizer nodes.

(ii) Can any edges be pruned? Explain.
Edges that can be pruned: 10-2, 4-6



(b) Food Dimensions
The following questions are completely unrelated to the above parts.

Pacman is playing a tricky game. There are 4 portals to food dimensions. But, these portals are guarded
by a ghost. Furthermore, neither Pacman nor the ghost know for sure how many pellets are behind each
portal, though they know what options and probabilities there are for all but the last portal.

Pacman moves first, either moving West or East. After which, the ghost can block 1 of the portals
available.

You have the following gametree. The maximizer node is Pacman. The minimizer nodes are ghosts and
the portals are chance nodes with the probabilities indicated on the edges to the food. In the event of a
tie, the left action is taken. Assume Pacman and the ghosts play optimally.

55 70 30 70 45 I0) X Y

(i) Fill in values for the nodes that do not depend on X and Y.

(ii) What conditions must X and Y satisfy for Pacman to move East? What about to definitely reach
the P47 Keep in mind that X and Y denote numbers of food pellets and must be whole numbers:
X,Y €{0,1,2,3,...}.

To move East: | X +Y > 128
To reach P4: | X +Y =129

The first thing to note is that, to pick A over B, value(A) > value(B).
Also, the expected value of the parent node of X and Y is X?ZL .

= min(65, XEX) > 64

— Y > 64

So, X +Y > 128 = walue(A) > value(B)

To ensure reaching X or Y, apart from the above, we also have X ;Y < 65
— 128< X +Y <130
So, X, Y eN —= X+Y =129



Markov Decision Processes

A Markov Decision Process is defined by several properties:

A set of states S

A set of actions A.

A start state.

Possibly one or more terminal states.
Possibly a discount factor ~.

A transition function 7T'(s,a, s').
A reward function R(s,a,s’).

The Bellman Equation

e V*(s) — the optimal value of s is the expected value of the utility an optimally-behaving agent that starts
in s will receive, over the rest of the agent’s lifetime.

e Q*(s,a) - the optimal value of (s,a) is the expected value of the utility an agent receives after starting in
s, taking a, and acting optimally henceforth.

Using these two new quantities and the other MDP quantities discussed earlier, the Bellman equation is defined
as follows:

V*(s) = mgxz T(s,a,s')[R(s,a,s") +yV*(s")]

We can also define the equation for the optimal value of a g-state (more commonly known as an optimal
g-value):

Q*(s,0) = S T(s,a,8) [R(s,a,8') + 4V (s")
which allows us to reexpress the Bellman equation as

V*(s) = max Q" (s,a).

Value [teration

The time-limited value for a state s with a time-limit of &k timesteps is denoted Vj(s), and represents the
maximum expected utility attainable from s given that the Markov decision process under consideration ter-
minates in k timesteps. Equivalently, this is what a depth-k expectimax run on the search tree for a MDP
returns.

Value iteration is a dynamic programming algorithm that uses an iteratively longer time limit to compute
time-limited values until convergence (that is, until the V' values are the same for each state as they were in the
past iteration: Vs, Vi11(s) = Vi(s)). It operates as follows:

1. Vs € S, initialize Vp(s) = 0. This should be intuitive, since setting a time limit of 0 timesteps means no
actions can be taken before termination, and so no rewards can be acquired.

2. Repeat the following update rule until convergence:

Vs €S, Viti(s) « maXZT(S, a,s')[R(s,a,s") +vVi(s')]



At iteration k of value iteration, we use the time-limited values for with limit & for each state to generate
the time-limited values with limit (k 4 1). In essence, we use computed solutions to subproblems (all the
Vi (s)) to iteratively build up solutions to larger subproblems (all the Vi11(s)); this is what makes value
iteration a dynamic programming algorithm.

2 MDPs: Micro—Blaij ack

In micro-blackjack, you repeatedly draw a card (with replacement) that is equally likely to be a 2, 3, or 4. You
can either Draw or Stop if the total score of the cards you have drawn is less than 6. If your total score is 6 or
higher, the game ends, and you receive a utility of 0. When you Stop, your utility is equal to your total score
(up to 5), and the game ends. When you Draw, you receive no utility. There is no discount (y = 1). Let’s
formulate this problem as an MDP with the following states: 0,2, 3,4,5 and a Done state, for when the game
ends.

(a) What is the transition function and the reward function for this MDP? The transition function is
T(s, Stop, Done) =1
T(0, Draw,s") = 1/3 for s’ € {2,3,4}
T(2, Draw,s’) = 1/3 for ' € {4,5, Done}

‘ 1/3ifs’ =5
T'(3, Draw, S/) = 2?3 if s/ = Done

T(4, Draw, Done) = 1
T(5, Draw, Done) =1

T(s,a,s") = 0 otherwise
The reward function is

R(s, Stop, Done) = s,8 <5

R(s,a,s") = 0 otherwise

(b) Fill in the following table of value iteration values for the first 4 iterations.

States 0 2 3 4 5
Vo 0 0 0 0 0
Vi 0 2 3 4 5
Vs 3 3 3 4 5
Vs 10/3 3 3 4 5
V, 10/3 3 3 4 5

(¢) You should have noticed that value iteration converged above. What is the optimal policy for the MDP?

States 0 2 3 4 5

*

T Draw Draw Stop Stop Stop




