## CS 188 Fall 2022

## $Midterm \ Review \ MDPs$

## Q1. MDP

Pacman is using MDPs to maximize his expected utility. In each environment:

- Pacman has the standard actions {North, East, South, West} unless blocked by an outer wall
- There is a reward of 1 point when eating the dot (for example, in the grid below, R(C, South, F) = 1)
- The game ends when the dot is eaten
- (a) Consider a the following grid where there is a single food pellet in the bottom right corner (F). The **discount** factor is 0.5. There is no living reward. The states are simply the grid locations.



(i) What is the optimal policy for each state?

| State | $\pi(state)$ |
|-------|--------------|
| A     |              |
| В     |              |
| С     |              |
| D     |              |
| Е     |              |

(ii) What is the optimal value for the state of being in the upper left corner (A)? Reminder: the discount factor is 0.5.

 $V^*(A) =$ 

(iii) Using value iteration with the value of all states equal to zero at k=0, for which iteration k will  $V_k(A) = V^*(A)$ ?

k =

(b) Consider a new Pacman level that begins with cherries in locations D and F. Landing on a grid position with cherries is worth 5 points and then the cherries at that position disappear. There is still one dot, worth 1 point. The game still only ends when the dot is eaten.

| <sup>A</sup> C | во |   |   |
|----------------|----|---|---|
| С              | D  | Е | F |

(i) With no discount ( $\gamma = 1$ ) and a living reward of -1, what is the optimal policy for the states in this level's state space?

(ii) With no discount ( $\gamma = 1$ ), what is the range of living reward values such that Pacman eats exactly one cherry when starting at position A?

## Q2. Strange MDPs

In this MDP, the available actions at state A, B, C are *LEFT*, *RIGHT*, *UP*, and *DOWN* unless there is a wall in that direction. The only action at state D is the *EXIT ACTION* and gives the agent a reward of x. The reward for non-exit actions is always 1.



(a) Let all actions be deterministic. Assume  $\gamma = \frac{1}{2}$ . Express the following in terms of x.

 $V^*(D) = V^*(C) =$ 

$$V^*(A) = V^*(B) =$$

(b) Let any non-exit action be successful with probability  $=\frac{1}{2}$ . Otherwise, the agent stays in the same state with reward = 0. The *EXIT ACTION* from the **state D** is still deterministic and will always succeed. Assume that  $\gamma = \frac{1}{2}$ .

For which value of x does  $Q^*(A, DOWN) = Q^*(A, RIGHT)$ ? Box your answer and justify/show your work.

(c) We now add one more layer of complexity. Turns out that the reward function is not guaranteed to give a particular reward when the agent takes an action. Every time an agent transitions from one state to another, once the agent reaches the new state s', a fair 6-sided dice is rolled. If the dices lands with value x, the agent receives the reward R(s, a, s') + x. The sides of dice have value 1, 2, 3, 4, 5 and 6.

Write down the new bellman update equation for  $V_{k+1}(s)$  in terms of T(s, a, s'), R(s, a, s'),  $V_k(s')$ , and  $\gamma$ .