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Q1. We Are Getting Close...
Mesut is trying to remotely control a car, which has gone out of his view. The unknown state of the car is represented by
the random variable X. While Mesut can’t see the car itself, his high-tech sensors on the car provides two useful readings: an
estimate (E) of the distance to the car in front, and a detection model (D) that detects if the car is headed into a wall. Using
these two readings, Mesut applies the controls (C), which determine the velocity of the car by changing the acceleration. The
Dynamic Bayes Net below describes the setup.

(a) For the above DBN, complete the equations for performing updates. (Hint: think about the prediction update and obser-
vation update equations in the forward algorithm for HMMs.)

Time elapse: (i) = (ii) (iii) (iv) 𝑃
(

𝑥𝑡−1|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
)

(i) # 𝑃 (𝑥𝑡)  𝑃
(

𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
) # 𝑃

(

𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
)

(ii) # 𝑃 (𝑐0∶𝑡−1) # 𝑃 (𝑥0∶𝑡−1, 𝑐0∶𝑡−1) # 𝑃 (𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
# 𝑃 (𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡)  1

(iii)  Σ𝑥𝑡−1 # Σ𝑥𝑡 # max𝑥𝑡−1 # max𝑥𝑡 # 1

(iv) # 𝑃 (𝑥𝑡−1|𝑥𝑡−2) # 𝑃 (𝑥𝑡−1, 𝑥𝑡−2) # 𝑃 (𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
# 𝑃 (𝑥𝑡|𝑥𝑡−1) # 𝑃 (𝑥𝑡, 𝑥𝑡−1) # 𝑃 (𝑥𝑡, 𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
 𝑃 (𝑥𝑡|𝑥𝑡−1, 𝑐𝑡−1) # 𝑃 (𝑥𝑡, 𝑥𝑡−1, 𝑐𝑡−1) # 1

Recall the prediction update of forward algorithm: 𝑃 (𝑥𝑡|𝑜0∶𝑡−1) = Σ𝑥𝑡−1𝑃 (𝑥𝑡|𝑥𝑡−1)𝑃
(

𝑥𝑡−1|𝑜0∶𝑡−1
)

, where o is the obser-
vation. Here it is similar, despite that there are several observations at each time, which means 𝑜𝑡 corresponds to 𝑒𝑡, 𝑑𝑡, 𝑐𝑡
for each t, and that X is dependent on the C value of the previous time, so we need 𝑃 (𝑥𝑡|𝑥𝑡−1, 𝑐𝑡−1) instead of 𝑃 (𝑥𝑡|𝑥𝑡−1).
Also note that 𝑋 is independent of 𝐷𝑡−1, 𝐸𝑡−1 given 𝐶𝑡−1, 𝑋𝑡−1.
Update to incorporate new evidence at time 𝑡:
𝑃
(

𝑥𝑡|𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡
)

= (v) (vi) (vii) Your choice for (i)

(v) # (

𝑃
(

𝑐𝑡|𝑐0∶𝑡−1
))−1 # (

𝑃
(

𝑒𝑡|𝑒0∶𝑡−1
)

𝑃
(

𝑑𝑡|𝑑0∶𝑡−1
)

𝑃
(

𝑐𝑡|𝑐0∶𝑡−1
))−1

 (

𝑃
(

𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
))−1 # (

𝑃
(

𝑒0∶𝑡−1|𝑒𝑡
)

𝑃
(

𝑑0∶𝑡−1|𝑑𝑡
)

𝑃
(

𝑐0∶𝑡−1|𝑐𝑡
))−1

# (

𝑃
(

𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1|𝑒𝑡, 𝑑𝑡, 𝑐𝑡
))−1 # 1

(vi) # Σ𝑥𝑡−1 # Σ𝑥𝑡 # Σ𝑥𝑡−1,𝑥𝑡 # max𝑥𝑡−1 # max𝑥𝑡  1

(vii) □ 𝑃 (𝑥𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡) □ 𝑃 (𝑥𝑡, 𝑒𝑡, 𝑑𝑡, 𝑐𝑡)
□ 𝑃 (𝑥𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡, 𝑐𝑡−1) □ 𝑃 (𝑥𝑡, 𝑒𝑡, 𝑑𝑡, 𝑐𝑡, 𝑐𝑡−1)
■ 𝑃 (𝑒𝑡, 𝑑𝑡|𝑥𝑡)𝑃 (𝑐𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡−1) □ 𝑃 (𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑥𝑡) # 1

Recall the observation update of forward algorithm: 𝑃 (𝑥𝑡|𝑜0∶𝑡) ∝ 𝑃 (𝑥𝑡, 𝑜𝑡|𝑜0∶𝑡−1) = 𝑃 (𝑜𝑡|𝑥𝑡)𝑃 (𝑥𝑡|𝑜0∶𝑡−1).
Here the observations 𝑜𝑡 corresponds to 𝑒𝑡, 𝑑𝑡, 𝑐𝑡 for each t. Apply the Chain Rule, we are having
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𝑃
(

𝑥𝑡|𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡
)

∝ 𝑃
(

𝑥𝑡, 𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
)

= 𝑃 (𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑥𝑡, 𝑐𝑡−1)𝑃 (𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
= 𝑃 (𝑒𝑡, 𝑑𝑡|𝑥𝑡)𝑃 (𝑐𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡−1)𝑃 (𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1).
Note that in 𝑃 (𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑥𝑡, 𝑐𝑡−1), we cannot omit 𝑐𝑡−1 due to the arrow between 𝑐𝑡 and 𝑐𝑡−1.
To calculate the normalizing constant, use Bayes Rule: 𝑃

(

𝑥𝑡|𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡
)

= 𝑃 (𝑥𝑡,𝑒𝑡,𝑑𝑡,𝑐𝑡|𝑒0∶𝑡−1,𝑑0∶𝑡−1,𝑐0∶𝑡−1)
𝑃 (𝑒𝑡,𝑑𝑡,𝑐𝑡|𝑒0∶𝑡−1,𝑑0∶𝑡−1,𝑐0∶𝑡−1)

.

(viii) Suppose we want to do the above updates in one step and use normalization to reduce computation. Select all the
terms that are not explicitly calculated in this implementation.
DO NOT include the choices if their values are 1.

□ (ii) □ (iii) □ (iv) ■ (v) □ (vi) □ (vii) # None of the above

(v) is a constant, so we don’t calculate it during implementation and simply do a normalization instead. Everything else
is necessary.
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Q2. Planning ahead with HMMs
Pacman is tired of using HMMs to estimate
the location of ghosts. He wants to use
HMMs to plan what actions to take in or-
der to maximize his utility. Pacman uses
the HMM (drawn to the right) of length 𝑇 to
model the planning problem. In the HMM,
𝑋1∶𝑇 is the sequence of hidden states of
Pacman’s world, 𝐴1∶𝑇 are actions Pacman
can take, and 𝑈𝑡 is the utility Pacman re-
ceives at the particular hidden state 𝑋𝑡. No-
tice that there are no evidence variables, and
utilities are not discounted.

. . . 𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1 . . .

. . . 𝑈𝑡−1 𝑈𝑡 𝑈𝑡+1

𝐴𝑡−1 𝐴𝑡 𝐴𝑡+1

. . .

. . .. . .

(a) The belief at time 𝑡 is defined as 𝐵𝑡(𝑋𝑡) = 𝑝(𝑋𝑡|𝑎1∶𝑡). The forward algorithm update has the following form:

𝐵𝑡(𝑋𝑡) = (i) (ii) 𝐵𝑡−1(𝑥𝑡−1).

Complete the expression by choosing the option that fills in each blank.
(i) # max𝑥𝑡−1  ∑

𝑥𝑡−1
# max𝑥𝑡 # ∑

𝑥𝑡
# 1

(ii) # 𝑝(𝑋𝑡|𝑥𝑡−1) # 𝑝(𝑋𝑡|𝑥𝑡−1)𝑝(𝑋𝑡|𝑎𝑡) # 𝑝(𝑋𝑡)  𝑝(𝑋𝑡|𝑥𝑡−1, 𝑎𝑡) # 1

# None of the above combinations is correct

𝐵𝑡(𝑋𝑡) = 𝑝(𝑋𝑡|𝑎1∶𝑡)

=
∑

𝑥𝑡−1

𝑝(𝑋𝑡|𝑥𝑡−1, 𝑎𝑡)𝑝(𝑥𝑡−1|𝑎1∶𝑡−1)

=
∑

𝑥𝑡−1

𝑝(𝑋𝑡|𝑥𝑡−1, 𝑎𝑡)𝐵𝑡−1(𝑥𝑡−1)

(b) Pacman would like to take actions 𝐴1∶𝑇 that maximizes the expected sum of utilities, which has the following form:

MEU1∶𝑇 = (i) (ii) (iii) (iv) (v)

Complete the expression by choosing the option that fills in each blank.
(i)  max𝑎1∶𝑇 # max𝑎𝑇 # ∑

𝑎1∶𝑇
# ∑

𝑎𝑇
# 1

(ii) # max𝑡 # ∏𝑇
𝑡=1  ∑𝑇

𝑡=1 # min𝑡 # 1
(iii) # ∑

𝑥𝑡,𝑎𝑡
 ∑

𝑥𝑡
# ∑

𝑎𝑡
# ∑

𝑥𝑇
# 1

(iv) # 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑎𝑡) # 𝑝(𝑥𝑡)  𝐵𝑡(𝑥𝑡) # 𝐵𝑇 (𝑥𝑇 ) # 1

(v) # 𝑈𝑇 # 1
𝑈𝑡

# 1
𝑈𝑇

 𝑈𝑡 # 1

# None of the above combinations is correct

MEU1∶𝑇 = max
𝑎1∶𝑇

𝑇
∑

𝑡=1

∑

𝑥𝑡

𝐵𝑡(𝑥𝑡)𝑈𝑡(𝑥𝑡)

(c) A greedy ghost now offers to tell Pacman the values of some of the hidden states. Pacman needs your help to figure out
if the ghost’s information is useful. Assume that the transition function 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑎𝑡) is not deterministic. With respect
to the utility 𝑈𝑡, mark all that can be True:
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■ VPI(𝑋𝑡−1|𝑋𝑡−2) > 0 □ VPI(𝑋𝑡−2|𝑋𝑡−1) > 0 ■ VPI(𝑋𝑡−1|𝑋𝑡−2) = 0 ■ VPI(𝑋𝑡−2|𝑋𝑡−1) = 0 □
None of the above
It is always possible that VPI = 0. Can guarantee VPI(𝐸|𝑒) is not greater than 0 if 𝐸 is independent of parents(𝑈 ) given
𝑒.

(d) Pacman notices that calculating the beliefs under this model is very slow using exact inference. He therefore decides to
try out various particle filter methods to speed up inference. Order the following methods by how accurate their estimate
of 𝐵𝑇 (𝑋𝑇 ) is? If different methods give an equivalently accurate estimate, mark them as the same number.

Most
accurate

Least
accurate

Exact inference  1 # 2 # 3 # 4
Particle filtering with no resampling # 1  2 # 3 # 4
Particle filtering with resampling before every time elapse # 1 # 2 # 3  4
Particle filtering with resampling before every other time elapse # 1 # 2  3 # 4
Exact inference will always be more accurate than using a particle filter. When comparing the particle filter resampling
approaches, notice that because there are no observations, each particle will have weight 1. Therefore resampling when
particle weights are 1 could lead to particles being lost and hence prove bad.
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