Regular Discussion 9 Solutions

1 HMMs

5,188

Consider the following Hidden Markov Model.

			W_t	W_{t+1}	$P(W_{t+1} W_t)$	W_t	O_t	$P(O_t W_t)$
	W_1	$P(W_1)$	0	0	0.4	0	a	0.9
	0	0.3	0	1	0.6	0	b	0.1
 T	1	0.7	1	0	0.8	1	a	0.5
02			1	1	0.2	1	b	0.5

Suppose that we observe $O_1 = a$ and $O_2 = b$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

$$\begin{split} P(W_1, O_1 = a) &= P(W_1) P(O_1 = a | W_1) \\ P(W_1 = 0, O_1 = a) &= (0.3)(0.9) = 0.27 \\ P(W_1 = 1, O_1 = a) &= (0.7)(0.5) = 0.35 \end{split}$$

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

$$\begin{split} P(W_2,O_1=a) &= \sum_{w_1} P(w_1,O_1=a) P(W_2|w_1) \\ P(W_2=0,O_1=a) &= (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ P(W_2=1,O_1=a) &= (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{split}$$

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

$$\begin{split} P(W_2, O_1 = a, O_2 = b) &= P(W_2, O_1 = a) P(O_2 = b | W_2) \\ P(W_2 = 0, O_1 = a, O_2 = b) &= (0.388)(0.1) = 0.0388 \\ P(W_2 = 1, O_1 = a, O_2 = b) &= (0.232)(0.5) = 0.116 \end{split}$$

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

Renormalizing the distribution above, we have $P(W_2 = 0 | O_1 = a, O_2 = b) = 0.0388/(0.0388 + 0.116) \approx 0.25$ $P(W_2 = 1 | O_1 = a, O_2 = b) = 0.116/(0.0388 + 0.116) \approx 0.75$

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1 = a, O_2 = b)$. Here's the HMM again.

(w)				W_t	W_{t+1}	$P(W_{t+1} W_t)$	W_t	O_t	$P(O_t W_t)$
	2	W_1	$P(W_1)$	0	0	0.4	0	a	0.9
		0	0.3	0	1	0.6	0	b	0.1
\checkmark	·	1	0.7	1	0	0.8	1	a	0.5
$\left(O_{1}\right)$	$\left(O_{2} \right)$			1	1	0.2	1	b	0.5

We start with two particles representing our distribution for W_1 . $P_1: W_1 = 0$ $P_2: W_1 = 1$ Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

(a) Observe: Compute the weight of the two particles after evidence $O_1 = a$. $w(P_1) = P(O_t = a | W_t = 0) = 0.9$ $w(P_2) = P(O_t = a | W_t = 1) = 0.5$

 (b) Resample: Using the random numbers, resample P₁ and P₂ based on the weights. We now sample from the weighted distribution we found above. Using the first two random samples, we find: P₁ = sample(weights, 0.22) = 0

 $P_2 = sample(weights, 0.05) = 0$

- (c) Predict: Sample P_1 and P_2 from applying the time update. $P_1 = sample(P(W_{t+1}|W_t = 0), 0.33) = 0$ $P_2 = sample(P(W_{t+1}|W_t = 0), 0.20) = 0$
- (d) Update: Compute the weight of the two particles after evidence $O_2 = b$. $w(P_1) = P(O_t = b|W_t = 0) = 0.1$ $w(P_2) = P(O_t = b|W_t = 0) = 0.1$
- (e) Resample: Using the random numbers, resample P_1 and P_2 based on the weights. Because both of our particles have X = 0, resampling will still leave us with two particles with X = 0. $P_1 = 0$ $P_2 = 0$
- (f) What is our estimated distribution for $P(W_2|O_1 = a, O_2 = b)$? $P(W_2 = 0|O_1 = a, O_2 = b) = 2/2 = 1$ $P(W_2 = 1|O_1 = a, O_2 = b) = 0/2 = 0$