CS 188 Fall 2022

Regular Discussion 10 Solutions

1 Maximum Likelihood Estimation

Recall that a Geometric distribution is a defined as the number of Bernoulli trials needed to get one success. $P(X=k)=p(1-p)^{k-1}$. We observe the following samples from a Geometric distribution: $x_1=5, x_2=8, x_3=3, x_4=5, x_5=7$

What is the maximum likelihood estimate for p?

$$L(p) = P(X = x_1)P(X = x_2)P(X = x_3)P(X = x_4)P(X = x_5)$$
(1)

$$= P(X=5)P(X=8)P(X=3)P(X=5)P(X=7)$$
(2)

$$= p^5 (1-p)^{23} \tag{3}$$

$$\log(L(p)) = 5\log(p) + 23\log(1-p) \tag{4}$$

(5)

We must maximize the log-likelihood of p, so we will take the derivative, and set it to 0.

$$0 = \frac{5}{p} - \frac{23}{1-p} \tag{6}$$

$$p = 5/28 \tag{7}$$

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

	A	1	1	1	1	0	1	0	1	1	1
ĺ	B	1	0	0	1	1	1	1	0	1	1
Ì	\overline{Y}	1	1	0	0	0	1	1	0	0	0

(a) What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

Y	P(Y)
0	3/5
1	2/5

A	Y	P(A Y)
0	0	1/6
1	0	5/6
0	1	1/4
1	1	3/4

B	Y	P(B Y)
0	0	1/3
1	0	2/3
0	1	1/4
1	1	3/4

(b) Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

$$P(Y = 0, A = 1, B = 1) = P(Y = 0)P(A = 1|Y = 0)P(B = 1|Y = 0)$$
(8)

$$= (3/5)(5/6)(2/3) \tag{9}$$

$$=1/3\tag{10}$$

$$P(Y = 1, A = 1, B = 1) = P(Y = 1)P(A = 1|Y = 1)P(B = 1|Y = 1)$$
(11)

$$= (2/5)(3/4)(3/4) \tag{12}$$

$$=9/40\tag{13}$$

(14)

Our classifier will predict label 0.

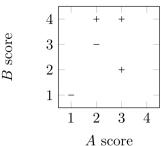
(c) Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k=2.

A	Y	P(A Y)
0	0	3/10
1	0	7/10
0	1	3/8
1	1	5/8

3 Perceptron

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to read a script you have and rate it on a scale of 1 to 4. The critics are not perfect; here are five data points including the critics' scores and the performance of the movie:

#	Movie Name	A	В	Profit?
1	Pellet Power	1	1	-
2	Ghosts!	3	2	+
3	Pac is Bac	2	4	+
4	Not a Pizza	3	4	+
5	Endless Maze	2	3	-



- (a) Plot the data above and determine if the points are linearly separable. Graph above. The data are linearly separable.
- (b) Now you decide to use a perceptron to classify your data. Suppose you directly use the scores given above as features, together with a bias feature. That is $f_0 = 1$, $f_1 =$ score given by A and $f_2 =$ score given by B.

Run one pass through the data with the perceptron algorithm, filling out the table below. Go through the data points in order, e.g. using data point #1 at step 1.

step	Weights	Score	Correct?
1	[-1, 0, 0]	$-1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = -1$	yes
2	[-1, 0, 0]	$-1 \cdot 1 + 0 \cdot 3 + 0 \cdot 2 = -1$	no
3	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 2 + 2 \cdot 4 = 14$	yes
4	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 3 + 2 \cdot 4 = 17$	yes
5	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 2 + 2 \cdot 3 = 12$	no

Final weights: [-1, 1, -1]

(c) Have weights been learned that separate the data? With the current weights, points will be classified as positive if $-1 \cdot 1 + 1 \cdot A + -1 \cdot B \ge 0$, or $A - B \ge 1$. So we will have incorrect predictions for data points 3:

$$-1 \cdot 1 + 1 \cdot 2 + -1 \cdot 4 = -3 < 0$$

and 4:

$$-1 \cdot 1 + 1 \cdot 3 + -1 \cdot 4 = -2 < 0$$

Note that although point 2 has $w \cdot f = 0$, it will be classified as positive (since we classify as positive if $w \cdot f \ge 0$).

- (d) More generally, irrespective of the training data, you want to know if your features are powerful enough to allow you to handle a range of scenarios. Circle the scenarios for which a perceptron using the features above can indeed perfectly classify movies which are profitable according to the given rules:
 - (a) Your reviewers are awesome: if the total of their scores is more than 5, then the movie will definitely be profitable, and otherwise it won't be. Can classify
 - (b) Your reviewers are art critics. Your movie will be profitable if and only if each reviewer gives either a score of 2 or a score of 3. Cannot classify
 - (c) Your reviewers have weird but different tastes. Your movie will be profitable if and only if both reviewers agree. Cannot classify

3