CS 188 Fall 2021

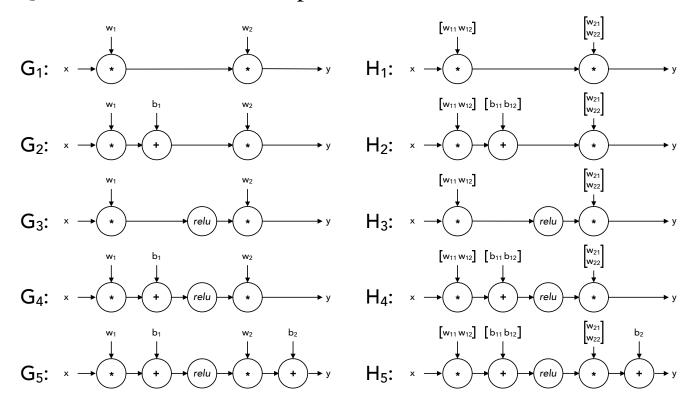
Introduction to Artificial Intelligence

Exam Prep 11

Q1. Machine Learning: Potpourri

(a)	What it the minimum number of parameters needed to fully model a joint distribution $P(Y, F_1, F_2,, F_n)$ over label Y and n features F_i ? Assume binary class where each feature can possibly take on k distinct values.		
(b)	Under the Naive Bayes assumption , what is the minimum number of parameters needed to model a joint distribution $P(Y, F_1, F_2,, F_n)$ over label Y and n features F_i ? Assume binary class where each feature can take on k distinct values.		
(c)	You suspect that you are overfitting with your Naive Bayes with Laplace Smoothing. How would you adjust the strength a in Laplace Smoothing?		
	\bigcirc Increase k	\circ	Decrease k
(d)	While using Naive Bayes with Laplace Smoothing, increasing the strength k in Laplace Smoothing can:		
	☐ Increase training error		Decrease training error
	☐ Increase validation error		Decrease validation error
(e)	It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in its feature space.		
	O True	\circ	False
(f)	If the perceptron algorithm terminates, then it is guaranteed to find a max-margin separating decision boundary.		
	○ True	0	False
(g)	In binary perceptron where the initial weight vector is $\vec{0}$, the final weight vector can be written as a linear combination of the training data feature vectors.		
	○ True	0	False
(h)	For binary class classification, logistic regression produces a linear decision boundary.		
	○ True	\circ	False
(i)	In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.		
	O True	\circ	False
(j)	You train a linear classifier on 1,000 training points and discover that the training accuracy is only 50%. Which of the following, if done in isolation, has a good chance of improving your training accuracy?		
	Add novel features	Train on more data	
(k)	You now try training a neural network but you find that the training accuracy is still very low. Which of the following, if done in isolation, has a good chance of improving your training accuracy?		
	Add more hidden layers		Add more units to the hidden layers

Q2. Neural Networks: Representation



For each of the piecewise-linear functions below, mark all networks from the list above that can represent the function **exactly** on the range $x \in (-\infty, \infty)$. In the networks above, *relu* denotes the element-wise ReLU nonlinearity: relu(z) = max(0, z). The networks G_i use 1-dimensional layers, while the networks H_i have some 2-dimensional intermediate layers.

