
CS 188
Summer 2022 Final Review Search Solutions
Q1. Power Pellets
Consider a Pacman game where Pacman can eat 3 types of pellets:

• Normal pellets (n-pellets), which are worth one point.

• Decaying pellets (d-pellets), which are worth max(0, 5− t) points, where t is time.

• Growing pellets (g-pellets), which are worth t points, where t is time.

The location and type of each pellet is fixed. The pellet’s point value stops changing once eaten. For example,
if Pacman eats one g-pellet at t = 1 and one d-pellet at t = 2, Pacman will have won 1 + 3 = 4 points.

Pacman needs to find a path to win at least 10 points but he wants to minimize distance travelled. The cost
between states is equal to distance travelled.

(a) Which of the following must be including for a minimum, sufficient state space?

■ Pacman’s location
□ Location and type of each pellet
□ How far Pacman has travelled
■ Current time
□ How many pellets Pacman has eaten and the point value of each eaten pellet
■ Total points Pacman has won
■ Which pellets Pacman has eaten

A state space should include which pellets are left on the board, the current value of pellets, Pacman’s location,
and the total points collected so far. With this in mind:
(1) The starting location and type of each pellet are not included in the state space as this is something that
does not change during the search. This is analogous to how the walls of a Pacman board are not included in
the state space.
(2) How far Pacman has travelled does not need to be explicitly tracked by the state, since this will be reflected
in the cost of a path.
(3) Pacman does need the current time to determine the value of pellets on the board.
(4) The number of pellets Pacman has eaten is extraneous.
(5) Pacman must track the total number of points won for the goal test.
(6) Pacman must know which pellets remain on the board, which is the complement of the pellets he has eaten.

(b) Which of the following are admissible heuristics? Let x be the number of points won so far.

■ Distance to closest pellet, except if in the goal state, in which case the heuristic value is 0.
□ Distance needed to win 10− x points, determining the value of all pellets as if they were n-pellets.
■ Distance needed to win 10 − x points, determining the value of all pellets as if they were g-pellets
(i.e. all pellet values will be t.)

□ Distance needed to win 10 − x points, determining the value of all pellets as if they were d-pellets
(i.e. all pellet values will be max(0, 5− t).

□ Distance needed to win 10−x points assuming all pellets maintain current point value (g-pellets stop

1

increasing in value and d-pellets stop decreasing in value)

□ None of the above

(1) Admissible; to get 10 points Pacman will always have to travel at least as far as the distance to the closest
pellet, so this will always be an underestimate.
(2) Not admissible; if all the pellets are actually g-pellets, assuming they are n-pellets will lead to Pacman
collecting more pellets in more locations, and thus travel further.
(3) Ambiguous; if pellets are n-pellets or d-pellets, Pacman will generally have to go further, except at the
beginning of the game when d-pellets are worth more, in which case this heuristic will over-estimate the cost to
the goal. However, if Pacman is allowed to stay in place with no cost, then this heuristic is admissable because
the heuristic will instead calculate all pellet values as 10. This option was ignored in scoring.
(4) Not admissible; if pellets are n-pellets or g-pellets, Pacman would have an overestimate.
(5) Not admissible; if pellets are g-pellets, then using the current pellet value might lead Pacman to collect more
locations, and thus travel further than necesarry.

(c) Instead of finding a path which minimizes distance, Pacman would like to find a path which minimizes
the following:

Cnew = a ∗ t+ b ∗ d

where t is the amount of time elapsed, d is the distance travelled, and a and b are non-negative constants
such that a+ b = 1. Pacman knows an admissible heuristic when he is trying to minimize time (i.e. when
a = 1, b = 0), ht, and when he is trying to minimize distance, hd (i.e. when a = 0, b = 1).
Which of the following heuristics is guaranteed to be admissible when minimizing Cnew?

□ mean(ht, hd) ■ min(ht, hd) □ max(ht, hd) ■ a ∗ ht + b ∗ hd

□ None of the above

For this question, think about the inequality Cnew = a ∗ t+ b ∗ d ≥ a ∗ ht + b ∗ hd. We can guarantee a heuristic
hnew is admissible if hnew ≤ a ∗ ht + b ∗ hd

(1) If a = b, 0.5 ∗ ht + 0.5 ∗ hd is not guaranteed to be less than a ∗ ht + b ∗ hd, so this will not be admissible.
(2) min(ht, hd) = a ∗min(ht, hd) + b ∗min(ht, hd) ≤ a ∗ ht + b ∗ hd

(3) max(ht, hd) will be greater than a ∗ ht + b ∗ hd unless ht = hd, wo this will not be admissible.
(4) Admissible.

2

Q2. Rubik’s Search
Note: You do not need to know what a Rubik’s cube is in order to solve this problem.

A Rubik’s cube has about 4.3 × 1019 possible configurations, but any configuration can be solved in 20 moves
or less. We pose the problem of solving a Rubik’s cube as a search problem, where the states are the possible
configurations, and there is an edge between two states if we can get from one state to another in a single move.
Thus, we have 4.3 × 1019 states. Each edge has cost 1. Note that the state space graph does contain cycles.
Since we can make 27 moves from each state, the branching factor is 27. Since any configuration can be solved
in 20 moves or less, we have h∗(n) ≤ 20.

For each of the following searches, estimate the approximate number of states expanded. Mark the option that
is closest to the number of states expanded by the search. Assume that the shortest solution for our start state
takes exactly 20 moves. Note that 2720 is much larger than 4.3× 1019.

(a) DFS Tree Search

(i) Best Case: 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(ii) Worst Case: # 20 # 4.3× 1019 # 2720 ∞ (never finishes)

(b) DFS graph search

(i) Best Case: 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(ii) Worst Case: # 20 4.3× 1019 # 2720 # ∞ (never finishes)

(c) BFS tree search

(i) Best Case: # 20 # 4.3× 1019 2720 # ∞ (never finishes)

(ii) Worst Case: # 20 # 4.3× 1019 2720 # ∞ (never finishes)

(d) BFS graph search

(i) Best Case: # 20 4.3× 1019 # 2720 # ∞ (never finishes)

(ii) Worst Case: # 20 4.3× 1019 # 2720 # ∞ (never finishes)

(e) A* tree search with a perfect heuristic, h*(n), Best Case

 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(f) A* tree search with a bad heuristic, h(n) = 20 - h*(n), Worst Case

20 # 4.3× 1019 2720 # ∞ (never finishes)

(g) A* graph search with a perfect heuristic, h*(n), Best Case

 20 # 4.3× 1019 # 2720 # ∞ (never finishes)

(h) A* graph search with a bad heuristic, h(n) = 20 - h*(n), Worst Case

20 4.3× 1019 # 2720 # ∞ (never finishes)

3

Q3. [Optional] Search in 3D Maze
Imagine you are the Spider man. Your friend Superman was captured by the evil Spider man somewhere in this
mystical 3D maze (Fig 1), (xt, yt, zt). This maze is a infinite 3D grid world. You are located at (0, 0, 0) right
now and want to come up with a plan to rescue the Superman. Even though you are the Spider man, you can
only travel along the wires, not through the space.

3D Maze

(a) What is the branch factor b in this space?

6

(b) How many distinct states can you reach at depth k?

4k + 4k(k − 1) + 2 = 4k2 + 2

We’re essentially asked the number of solutions to the equation: |x| + |y| + |z| = k. To do this, we can
split this into three different cases and use a balls and bins argument:

1. Case 1: Any two of x, y, z are 0. In this case, there are 3 ∗ 2 = 6 solutions, where 3 is because we can
have |x| = k, |y| = k, |z| = k and 2 is because if |x| = k, then x can be +k or −k.

2. Case 2: One of x, y, z is 0. From this there are 3 ∗
(
k−1
1

)
∗ 4 = 12k − 12 solutions.

3. Case 3: None of x, y, z are 0. Then there are
(
k−1
2

)
∗ 8 = 4(k − 1)(k − 2) = 4k2 − 12k + 8 solutions

Summing these results, we get 6 + 12k − 12 + 4k2 − 12k + 8 = 4k2 + 2

(c) If you run BFS-tree search, how many nodes would you have expanded up to the goal state? What about
BFS-graph search?

Without checking repeated states, the BFS will expand exponentially many nodes on the order of 6xt+yt+zt .
On the other hand, BFS-graph search would expand on the order of (xt + yt + zt)

3 many states.

(d) Assume each edge has a cost of 1. Let the state be (u, v, w). Which of the following heuristics are
admissible? Select all that apply.

■ h1(u, v, w) =
√
(xt − u)2 + (yt − v)2 + (zt − w)2

■ h2(u, v, w) = |xt − u|+ |yt − v|+ |zt − w|

■ h3(u, v, w) =
√
|xt − u|+

√
|yt − v|+

√
|zt − w|

□ h1(u, v, w) = (xt − u)2 + (yt − v)2 + (zt − w)2

4

(e) Approximately how many nodes would you expand if you use heuristic h1?

|xtytzt|# (xt)
2 + (yt)

2 + (zt)
2 #

√
(xt − u)2 + (yt − v)2 + (zt − w)2 |xt|+ |yt|+ |zt|

What about h2?

 |xtytzt|# (xt)
2 + (yt)

2 + (zt)
2 #

√
(xt − u)2 + (yt − v)2 + (zt − w)2 # |xt|+ |yt|+ |zt|

(f) If the evil Spider man destroys half of the links in this grid, would the heuristics h1 and h2 be admissible?

Yes, they are, because removing links only cause more detours.

(g) In expectation (assume random tie-breaking), how many nodes would you expand before hitting the goal
if you use UCS tree search, DFS graph search, or greedy search instead of A* search? Assume each path
has cost 1 and heuristic h1.

UCS tree search would explore 6xt+yt+zt many nodes. DFS graph search could go to infinity because
this is an infinite grid world. Greedy search would have the same complexity as A* in this case, which is
|xt|+ |yt|+ |zt|

5

