
CS 188
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Introduction to
Artificial Intelligence Challenge Q10 HW5

• Due: Friday 10/7 at 11:59pm.

• Policy: Can be solved in groups (acknowledge collaborators) but must be submitted individually.

• Make sure to show all your work and justify your answers.

• Note: This is a typical exam-level question. On the exam, you would be under time pressure, and have to complete this
question on your own. We strongly encourage you to first try this on your own to help you understand where you currently
stand. Then feel free to have some discussion about the question with other students and/or staff, before independently
writing up your solution.

• Your submission on Gradescope should be a PDF that matches this template. Each page of the PDF should align with the
corresponding page of the template (page 1 has name/collaborators, question begins on page 2.). Do not reorder, split,
combine, or add extra pages. The intention is that you print out the template, write on the page in pen/pencil, and then
scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a
tablet.)
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Q10. [16 pts] Challenge Question (RL)
For this problem assume that the discount factor 𝛾 = 1. The environment in which the agent moves can be seen in Figure 1,
which we will refer to as MDP1. The agent starts from the start state 𝑆. Double squares denote exit states from which the only
action the agent can take is exit. By taking the exit action, the agent collects the reward listed in the double box and then moves
to a terminal state where no further rewards can be collected. In all other states (the single boxes), the agent can move to any
neighboring state, obtaining a zero reward. For example from state 𝑆 the agent can go right by taking action →.

Figure 1: MDP1: (Left) Start state and rewards for exit actions. (Right) State names.

10.1) (2 pts) What are the optimal 𝑉 -values for states 𝐴 and 𝑆?

𝑉 ∗(𝐴) =

𝑉 ∗(𝑆) =

Computing optimal policies when we know the rewards and transitions in a MDP is straightforward. Now we assume that we do
not have that information, and thus we would like to implement Q-learning to derive an optimal policy. When we run Q-learning,
we will initialize the Q-values to zero. Assume the following sequence of transitions and associated rewards, where 𝑋 denotes
the terminal state:

s a s’ r
S → A 0
A ↑ E1 0
E1 exit X 1
S → A 0
A → E10 0
E10 exit X 10

10.2) (2 pts) Which of the following Q-values are non-zero after running Q-learning on the transition-reward pairs above,
assuming that we go through the sequence above only one time? Select all that apply.

A. 𝑄(𝑆,→)

B. 𝑄(𝐴, ↑)

C. 𝑄(𝐴,→)

D. 𝑄(𝐸1, exit)

E. 𝑄(𝐸10, exit)
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10.3) (2 pts) Assume we use a learning rate 𝛼 of 0.5. If we run Q-learning on the dataset above for an infinite number of
iterations, then what are the Q-values upon convergence? If a Q-value does not converge, write 𝑛𝑜𝑛𝑒 for that value.

𝑄(𝑆,→) =

𝑄(𝐴,←) =

𝑄(𝐴, ↑) =

Now let’s consider a modified MDP, called MDP2 in which now state 𝐴 (denoted with a spiral) is a special state in which the
only action is to escape. The escape action will take the agent to a neighboring state, each with equal probability.

random.

Figure 2: MDP2: States and rewards.

10.4) (2 pts) What are the optimal 𝑉 -values in this new MDP for states 𝑆 and 𝐴?

𝑉 ∗(𝑆) =

𝑉 ∗(𝐴) =

Now consider the following two datasets S1 and S2 accumulated from the new MDP. Remember that 𝐸1 denotes the square
corresponding to an 𝑒𝑥𝑖𝑡 reward of +1 and 𝐸10 denotes the square corresponding to an 𝑒𝑥𝑖𝑡 reward of +10:

S1
s a s’ r
S → A 0
A escape E1 0
E1 exit X 1
S → A 0
A escape E10 0
E10 exit X 10

S2
s a s’ r
S → A 0
A escape E1 0
E1 exit X 1
S → A 0
A escape E10 0
E10 exit X 10
S → A 0
A escape E10 0
E10 exit X 10
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10.5) (2 pts) If we run Q-learning by iterating infinitely over the data sequence S1 with an appropriately decreasing learning
rate, what will the converged values of the following Q-values be? If a Q-value does not converge, write 𝑛𝑜𝑛𝑒 for that value.

𝑄𝑆1(𝑆,→) =

𝑄𝑆1(𝐴, 𝑒𝑠𝑐𝑎𝑝𝑒) =

10.6) (2 pts) Under the same setup as in 10.5) but for S2, what are the values for the following two Q-values? If a Q-value does
not converge, write 𝑛𝑜𝑛𝑒 for that value.

𝑄𝑆2(𝑆,→) =

𝑄𝑆2(𝐴, 𝑒𝑠𝑐𝑎𝑝𝑒) =

10.7) (2 pts) Which of the following options is the true optimal Q-value 𝑄∗(𝑆,→) for MDP2?

A. 𝑄𝑆1(𝑆,→)

B. 𝑄𝑆2(𝑆,→)

C. Neither

10.8) (2 pts) If we run Q-learning with a constant learning rate 𝛼 = 1 and we visit all state-actions pairs infinitely often, then
for which of the two MDPs, if any, does Q-learning converge? Select exactly one answer.

A. MDP1 only

B. MDP2 only

C. MDP1 and MDP2

D. Neither of them

4


