CS 188: Artificial Intelligence

Announcements

- Project 1 is due Friday, September 9, 11:59 PM PT
 - Start soon if you haven't already! It's one of the longer projects.
- HW1 is due **Friday, September 9**, 11:59 PM PT

Today

Efficient Solution of CSPs

Local Search

Reminder: CSPs

CSPs:

- Variables
- Domains
- Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

Goals:

- Here: find any solution
- Also: find all, find best, etc.

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
   return Recursive-Backtracking(\{\}, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
            if result \neq failure then return result
            remove \{var = value\} from assignment
   return failure
```

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?

- Which variable should be assigned next? (MRV)
- In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

- Tail = NT, head = WA
 - If NT = blue: we could assign WA = red
 - If NT = green: we could assign WA = red
 - If NT = red: there is no remaining assignment to WA that we can use
 - Deleting NT = red from the tail makes this arc consistent

Consistency of A Single Arc

An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

Delete from the tail!

Forward checking: Enforcing consistency of arcs pointing to each new assignment

A simple form of propagation makes sure all arcs are consistent:

 Arc V to NSW is consistent: for every x in the tail there is some y in the head which could be assigned without violating a constraint

A simple form of propagation makes sure all arcs are consistent:

 Arc SA to NSW is consistent: for every x in the tail there is some y in the head which could be assigned without violating a constraint

A simple form of propagation makes sure all arcs are consistent:

- Arc NSW to SA is not consistent: if we assign NSW = blue, there is no valid assignment left for SA
- To make this arc consistent, we delete NSW = blue from the tail

A simple form of propagation makes sure all arcs are consistent:

- Remember that arc V to NSW was consistent, when NSW had red and blue in its domain
- After removing blue from NSW, this arc might not be consistent anymore! We need to recheck this arc.
- Important: If X loses a value, neighbors of X need to be rechecked!

A simple form of propagation makes sure all arcs are consistent:

Arc SA to NT is inconsistent. We make it consistent by deleting from the tail (SA = blue).

A simple form of propagation makes sure all arcs are consistent:

- SA has an empty domain, so we detect failure. There is no way to solve this CSP with WA = red and Q = green, so we backtrack.
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard why?

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search!

wrong here?

[Demo: coloring -- forward checking] [Demo: coloring -- arc consistency]

K-Consistency

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - **-** ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

Combining these ordering ideas makes
 1000 queens feasible

Structure

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2^{80} = 4 billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Cutset Quiz

Find the smallest cutset for the graph below.

Tree Decomposition*

NT

NSW

WA

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints

Basic solution: backtracking search

- Speed-ups:
 - Ordering
 - Filtering
 - Structure

Iterative min-conflicts is often effective in practice

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
- What's bad about this approach?
 - Complete?
 - Optimal?
- What's good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```


Simulated Annealing

- Theoretical guarantee:
 - ullet Stationary distribution: $p(x) \propto e^{rac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Next Time: Adversarial Search!