
Announcements

§ Homework 2 due tomorrow (Sept 16) at 11:59pm PT

§ Project 2 due next Thursday (Sept 22) at 11:59pm PT

Recap: Why Pacman Starves (d=2)

§ A danger of replanning agents!
§ He knows his score will go up by eating the dot now (west, east)
§ He knows his score will go up just as much by eating the dot later (east, west)
§ There are no point-scoring opportunities after eating the dot (within the horizon, two here)
§ Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

Recap: Why Pacman Starves (d=2)

Recap: Why Pacman Starves (d=2)

CS 188: Artificial Intelligence
Search with Other Agents: Uncertainty

University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Uncertain Outcomes

Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

§ Why wouldn’t we know what the result of an action will be?
§ Explicit randomness: rolling dice
§ Unpredictable opponents: the ghosts respond randomly
§ Actions can fail: when moving a robot, wheels might slip

§ Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

§ Expectimax search: compute the average score under
optimal play
§ Max nodes as in minimax search
§ Chance nodes are like min nodes but the outcome is uncertain
§ Calculate their expected utilities
§ I.e. take weighted average (expectation) of children

§ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Example

12 9 6 03 2 154 6

Expectimax Pruning?

12 93 2

Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true

expectimax value
(which would

require a lot of
work to compute)

Probabilities

Reminder: Probabilities

§ A random variable represents an event whose outcome is unknown
§ A probability distribution is an assignment of weights to outcomes

§ Example: Traffic on freeway
§ Random variable: T = whether there’s traffic
§ Outcomes: T in {none, light, heavy}
§ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

§ Some laws of probability (more later):
§ Probabilities are always non-negative
§ Probabilities over all possible outcomes sum to one

§ As we get more evidence, probabilities may change:
§ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
§ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

§ The expected value of a function of a random variable is the
average, weighted by the probability distribution over
outcomes

§ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

§ In expectimax search, we have a probabilistic model
of how the opponent (or environment) will behave in
any state
§ Model could be a simple uniform distribution (roll a die)
§ Model could be sophisticated and require a great deal of

computation
§ We have a chance node for any outcome out of our control:

opponent or environment
§ The model might say that adversarial actions are likely!

§ For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about
another agent’s action does not mean

that the agent is flipping any coins!

Quiz: Informed Probabilities

§ Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

§ Question: What tree search should you use?

0.1 0.9

§ Answer: Expectimax!
§ To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent
§ This kind of thing gets very slow very quickly
§ Even worse if you have to simulate your

opponent simulating you…
§ … except for minimax, which has the nice

property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions
Random Ghost – Minimax Pacman

Video of Demo World Assumptions
Random Ghost – Expectimax Pacman

Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Other Game Types

Mixed Layer Types

§ E.g. Backgammon
§ Expectiminimax

§ Environment is an
extra “random
agent” player that
moves after each
min/max agent

§ Each node
computes the
appropriate
combination of its
children

Example: Backgammon

§ Dice rolls increase b: 21 possible rolls with 2 dice
§ Backgammon » 20 legal moves
§ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

§ As depth increases, probability of reaching a given
search node shrinks
§ So usefulness of search is diminished
§ So limiting depth is less damaging
§ But pruning is trickier…

§ Historic AI: TDGammon uses depth-2 search + very
good evaluation function + reinforcement learning:
world-champion level play

§ 1st AI world champion in any game!

Image: Wikipedia

Multi-Agent Utilities

§ What if the game is not zero-sum, or has multiple players?

§ Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Probabilities and Randomness in Algorithm Design

Overcoming Resource Limits with Randomness

§ Even with alpha-beta pruning and limited depth, large b is an
issue (recall best-case time complexity is bm/2)
§ Possible for chess: with alpha-beta, 35(8/2) =~ 1M; depth 8 is quite good
§ Difficult for Go: 300(8/2) =~ 8 billion

§ Monte Carlo Tree Search (MCTS) combines two important ideas:
§ Evaluation by rollouts – play multiple games to termination from a

state s (using a simple, fast or random policy) and count wins and losses
§ Selective search – explore parts of the tree that will help improve the

decision at the root, regardless of depth

Rollouts

§ For each rollout:
§ Repeat until terminal:

§ Play a move according to
a fixed, fast rollout policy

§ Record the result

§ Fraction of wins
correlates with the true
value of the position!

§ Having a “better”
rollout policy helps

“Move 37”

MCTS Version 0

§ Do N rollouts from each child of the root, record fraction of wins
§ Pick the move that gives the best outcome by this metric

57/100 65/10039/100

MCTS Version 0

§ Do N rollouts from each child of the root, record fraction of wins
§ Pick the move that gives the best outcome by this metric

57/100 59/1000/100

MCTS Version 0.9

§ Allocate rollouts to more promising nodes

77/140 90/1500/10

MCTS Version 0.9

§ Allocate rollouts to more promising nodes

61/100 48/1006/10

MCTS Version 1.0

§ Allocate rollouts to more promising nodes
§ Allocate rollouts to more uncertain nodes

61/100 48/1006/10

Upper Confidence Bounds (UCB) heuristics

§ UCB1 formula combines “promising” and “uncertain”:

§ N(n) = number of rollouts from node n
§ U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))

§ Keep track of both for each node

N(n)

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n

and
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

N(n)U(n)

4/6

2/3 1/2 0/1

1/2

0/1 1/1

0/1 1/10/1

[Example adapted from Introduction to Monte Carlo Tree Search. Bradberry. 2015]

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n

and
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

4/6

2/3 1/2 0/1

0/1 1/2

0/1 1/1

0/1 1/1

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n

and
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

4/6

2/3 1/2 0/1

0/1 1/2

0/1 1/1

0/1 1/1

0/0

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n

and
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

4/6

2/3 1/2 0/1

0/1 1/2

0/1 1/1

0/1 1/1

1/1

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n

and
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

5/7

2/4 1/2 0/1

0/1 2/3

0/1 1/2

0/1 1/1

1/1

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n

and
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

§ Choose the action leading to the
child with highest N

5/7

2/4 1/2 0/1

0/1 2/3

0/1 1/2

0/1 1/1

1/1

Why is there no min or max?????

§ “Value” of a node, U(n)/N(n), is a weighted sum of child values!
§ Idea: as N ®¥ , the vast majority of rollouts are concentrated in

the best child(ren), so weighted average ® max/min
§ Theorem: as N ®¥ UCT selects the minimax move

§ (but N never approaches infinity!)

MCTS Application: AlphaGo

§ Monte Carlo Tree Search with additions including:
§ Rollout policy is a neural network trained with reinforcement learning

and expert human moves
§ In combination with rollout outcomes, use a trained value function to

better predict node’s utility

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature. 2016]

Next Time: MDPs!

