Announcements

= Project 2 due this Thursday (Sept 22) at 11:59pm PT
= Homework 3 due this Friday (Sept 23) at 11:59pm PT

= Mini-Contest 1 (optional) due next Monday (Sept 26) at 11:59pm PT

Mini-Contest 1

SCORE: 288

Preview of Next Two Weeks

Previously looked at search

" Calculate what to do only in current situation

Now will look at learning habits/reflexes

" Pre-calculate what to do for any situation

This week: value iteration and policy iteration

" Assumes we can query model of the world

Next week: learning from trial and error

" Learn only from interactions with the world

CS 188: Artificial Intelligence

Markov Decision Processes

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Examples of (Deep) Reinforcement Learning

2013: Playing Atari games

000000
SECTIR O1

Pong

[Human-level control through deep reinforcement learning. Mnih et al. Nature 2015]

Examples of (Deep) Reinforcement Learning

2015: Locomotion from trial and error

lteration O

[Trust Region Policy Optimization. Schulman et al. ICLR 2015]

Examples of (Deep) Reinforcement Learning

2016: Playing Go (and beating human champion)

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature 2016]

Examples of (Deep) Reinforcement Learning

2019: Robot manipulation

[Solving Rubik's cube with a robot hand. OpenAl. 2019]

Examples of (Deep) Reinforcement Learning

2022: Nuclear fusion plasma control

Photo Credits: DeepMind and SPC/EPFL

0.09s
)
(I

View from inside the tokamak Plasma state reconstruction

[Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al. Nature 2022]

Examples of (Deep) Reinforcement Learning

2022: Economic policy design?

Planner 1. Observes 2. Decides 3. Optimizes Al planner @ Episode n Episode n +1
Market price Set tax rates Social welfare 50% 2004 L
Tax rates of? . 5 5
X i& . Effective taxrates 20% | 399% 1
Agent inventories : | —
B
- Agents 1. Observe 2. Decide *—————> 3. Optimize o Taxpaid < Posttax incomes < —
Neighborhood A lannsr Move/gather | Posttax utility | : ‘
Inventory Buy/sell i :
= o i) ! ~ 7
Skill level Build L Agent & 02 o N2 021 oo 02T
Market price : ‘ 100 90
Tax rate "
L Adapting to |each other |] :
L Agent @ Mo G102 121t Ul tel
2> Coin 4& Wood 200 180 :

© Stone ™ House

Equality (x) == Productivity () -

Social welfare

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

= Asetofstatess €S

A set of actions a € A

A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy n*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Optimal Policies

o N
T Il
= ©
I~ o

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0.5

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As — S iS a State

~

\e /—> (s,a,s’) called a transition
s,a,s’ T(s,a,s’) = P(s’[s,a) “
) R(s,a,s’)
N\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0,0]

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Quiz: Discounting

Given: 10 1

a b C d e
= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

Photo credit: NBC

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0O<y<1

U([ro,.--ro0)) = > v'r¢ < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy) 5,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Racing Search Tree

Racing Search Tree

A

LIETImEL]

LIEEINEL

I

FIETTME TR L]

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

NEE RN

R CHER TR

———

—

—

-

W

FIETIRELL

LIETImEL]

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
s (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 58,5 (s,a,8") is a
, transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Noise = 0.2
D nt=0.9
Living reward =0

Values of States

m Recursive definition of value:

V*(s) = max Q*(s, a)

QR*(s,a) = ZT(S, a,s') {R(S, a,s’) + ’}/V*(S/)}

V*i(s) = mC?XZT(S,CL,S/) [R(s,a,s’) ny*(s’)}

S

= But how do we solve these equations?

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

= Va(@)

T

CROCR A

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

.A.AA 'A 'AA s

NN N RN RN

VT T T | O O i VT T O O O e VOO O |

llIIIIl' I "I I1I|l||xll' - llllllll . Illllljl I|III| . III'IIA' I lxIl'

(=
(=
(=
(=

VT CRERREERI TR TR TR T

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence, which yields V*

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Overheated

Assume no discount!
Vi

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + WVk(sl)}

S

Example: Value Iteration

Overheated

v [3] Assume no discount!
1 r

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 1(1+0)=1

a=fast: 0.5(2+0)+0.5(2+0)=2

Example: Value Iteration

Overheated

v [) 3] Assume no discount!
1 r

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 0.5(1+0)+0.5(1+0)=1

a=fast: 1(-10 + 0) =-10

Example: Value Iteration

Overheated

Assume no discount!
(2 1 o)

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 1(1+2)=3

a=fast: 0.5(2+2)+0.5(2+1)=35

Example: Value Iteration

Overheated

Assume no discount!
(2 1 o)

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’}/Vk(sl)}

S

Vo [0 0 0] a=slow: 0.5(1+2)+0.5(1+1)=2.5

a=fast: 1(-10 + 0) =-10

Example: Value Iteration

Overheated

7 [) 1 0] Assume no discount!
Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + WVk(sl)}

S

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ryn / \ /

= But everything is discounted by yk that far out
= So V, and V,; are at most y* max|R| different
= So as kincreases, the values converge

Search vs Value Iteration

" When would you want to use search over value iteration?
= Thinking of a plan for situation vs forming a habit

Next Time: Policy-Based Methods

