CS 188: Artificial Intelligence

Markov Decision Processes II

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Today

= Review of MDPs, Bellman equation, value iteration

= Policy extraction, policy evaluation, policy iteration

= All based on the Bellman equation

= A preview of reinforcement learning

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount v)
= Start state s,

= Quantities:
" Policy = map of states to actions
= Utility = sum of discounted rewards
» Values = expected future utility from a state (max node)
= Q-Values = expected future utility from a g-state (chance node)

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |fthereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and

. _ sisa
acting optimally state
= The value (utility) of a g-state (s,a): gs_;;ti: .
Q’(s,a) = expected utility starting out B
having taken action a from state s and (s,a,8)is a
(thereafter) acting optimally transition

=" The optimal policy:
n'(s) = optimal action from state s

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

Optimal Quantities

" The value (utility) of a state s: vvv
V*(s) = expected utility starting in s and 1.00
acting optimally AAA

3 jaE

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out 0.8
having taken action a from state s and w w . W
(thereafter) acting optimally a @ AA

=" The optimal policy:
n'(s) = optimal action from state s

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

= The optimal policy:
n'(s) = optimal action from state s

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence, which yields V*

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value lteration

= Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + ny*(s/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(s, a,s) {R(s, a,s’) + nyk(s/)}

S

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values

Value lteration

" |nit:

Vs: V(s)=0

., ~
-, ~
-, ~
P ~
P ~
-,
-,
| . .
L7
[]
.
. J
.
.,
-,

A s
Vs: Vo ow(S) = maxz: T(s,a,s")[R(s,a,s") +yV(s')]
a
S/

V = View

Note: can even directly assign to V(s), which will not compute the sequence of V, but will still converge to V*

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Extraction

1

Computing Actions from Values

" Let’s imagine we have the optimal values V*(s)

= How should we act?

=" |t’s not obvious!

= We need to do a mini-expectimax (one step)

7*(s) = arg maXZT(S, a,s)[R(s,a,s) +~V*(s)]
¢ s’ ex: argmax [0.5, 1.7, 1.2] = 1

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

" Let’s imagine we have the optimal g-values: WW
ANV
= How should we act? W-}q
= Completely trivial to decide! 2 ‘”’9 00

" |mportant lesson: actions are easier to select from g-values than values!

Let’s think.

= Take a minute, think about value iteration.
" Write down the biggest question you have about it.

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + ’ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-"s,a,S

;\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 1t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

= Define the utility of a state s, under a fixed policy n:
V™(s) = expected total discounted rewards starting in s and following &t

= What is the recursive relation (one-step look-ahead / Bellman
equation)?
= Hint: recall Bellman equation for optimal policy:

V*i(s) = mC?XZT(S, a,s) [R(s, a,s’) + ’}/V*(S,)}

Utilities for a Fixed Policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

What is the recursive relation (one-step look-ahead / Bellman)
equation)? s;m(s),s
= Hint: recall Bellman equation for optimal policy: A s’

V*i(s) = mC?XZT(S, a,s) [R(s, a,s’) + ny*(s’)}

Answer:

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo (s) =0 ,s;”%f(s),s’
.

ka—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + ’YV]CW(S,)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Iteration

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vi1 (s) zm mi(s),8") |R(s,mi(s),s") + vV (s))]

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

8,

= Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....

= Compute optimal values: use value iteration or policy iteration

Value lteration

(V) o

Policy Iteration —P@

= Compute values for a particular policy: use policy evaluation

@—V Policy Evaluation

" Turn your values into a policy: use policy extraction (one-step lookahead)

()

Policy Extraction

e

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
" Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are —they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
» They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2yKeep being optimal

A~
o
7

Tourney of a thousand optimal steps begins with a j17st optimal step”

Preview of Reinforcement Learning: Double Bandits

= Actions: Blue, Red
= States: Win, Lose

Double-Bandit MDP

-

No discount

100 time steps

Both states have
the same value

~

Offline Planning

= Solving MDPs is offline planning 4 No discount A
" You determine all quantities through computation 100 time steps
" You need to know the details of the MDP Both states have
the same value

" You do not actually play the game!

4 N

Value
Play Red 150
Play Blue 100

o /

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

SO SO SO S2 SO
S2 SO0 SO SO SO

What Just Happened?

» That wasn’t planning, it was learning!
= Specifically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

" |mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

