CS 188: Artificial Intelligence

Reinforcement Learning Il

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning Overview

= Still assume an MDP:

= Asetofstatess e S
= Aset of actions (per state) A
= A model T(s,a,s’)

= Areward function R(s,a,s’)

= Still looking for a policy n(s)

= New twist: don’t know T or R, so must try out actions

= Big idea: Compute all averages over T using sample outcomes

Reinforcement Learning Taxonomy

Reinforcement Learning

Passive Active

Model-Based Model-Free

Value Learning Q Learning

Direct Evaluation TD Learning

Reinforcement Learning Overview

= Passive Reinforcement Learning (how to learn from experiences)

= Model-Based RL: Learn MDP model from experiences, then solve with value / policy iteration

= Model-Free RL: Skip learning MDP model, directly learn V or Q
= Value Learning: learn values of fixed policy & (Direct Evaluation or TD value learning)
Q-Learning: learn Q-values of optimal policy (Q-based version of TD learning)

@Active Reinforcement Learning (also decide how to collect experiences)

= Challenges: how to explore and minimize regret

@Approximate Reinforcement Learning (how to deal with large state spaces)

= Approximate Q-Learning
= Policy Search

Q-Learning

= (Q-value iteration: we’d like to do Q-value updates to each Q-state
Qut1(5,0) = Y T(s,0,8) | R(sa.8) + 7 max Qu(s',)
/ a

S
= But can’t compute this update without knowing T, R

= Q-Learning: instead, update Q as we go
= Receive a sample transition (s,a,s’,r)

= Consider new sample estimate of Q(s,a):
sample = R(s,a,s’) +~ max Q(s',a")
a

" |ncorporate new estimate into a running average of Q(s,a):

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Video of Demo Q-Learning -- Gridworld

= At each step:

Receive a sample transition (s,a,s’,r)

Make sample:

sample = R(s,a,s’) + v max Q(s',a")
a

Update Q based on sample:
Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-Learning with a Replay Buffer

= Problem:

= Need to repeat same (s,a,s’,r) transitions in environment
many times to propagate values

= Solution:

= Collect transitions in a memory buffer and “replay” them
to update Q values

= Uses memory of transitions only, no need to repeat them in
environment

= Evidence of such experience replay in the brain

Buffer

s,a,s’,r

s,a,s’,r

s,a,s’,r

s,a,s’,r

2

s,a,s’,r

. 4

Update Q

Q-Learning with a Replay Buffer

= At each step:
= Receive a sample transition (s,a,s’,r)
= Add (s,0,s’,r) to replay buffer
= Repeat N times:
= Randomly pick transition (s,a,s’,r) from replay buffer
= Make sample based on (s,a,s’,r):
sample = R(s,a,s’) +~ max Q(s',a")

= Update Q based on picked samgle:
Q(87 CL) N (1 o OK)Q(S, CL) + (Oé) [Sa’mple]

s,a,s’,r

. 4

s,a,s’,r

s,a,s’,r

s,a,s’,r

2

s,a,s’,r

. 4

Update Q

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

" This is called off-policy learning

= Caveats:

= You have to explore enough

" You have to eventually make the learning rate

small enough

= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

Active Reinforcement Learning

Reinforcement Learning Overview

= Passive Reinforcement Learning (how to learn from experiences)

= Model-Based RL: Learn MDP model from experiences, then solve with value / policy iteration

= Model-Free RL: Skip learning MDP model, directly learn V or Q
= Value Learning: learn values of fixed policy & (Direct Evaluation or TD value learning)
Q-Learning: learn Q-values of optimal policy (Q-based version of TD learning)

@Active Reinforcement Learning (also decide how to collect experiences)

= Challenges: how to explore and minimize regret

@Approximate Reinforcement Learning (how to deal with large state spaces)

= Approximate Q-Learning
= Policy Search

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
G2

How to Explore?

= Several schemes for forcing exploration

* Simplest: random actions (e-greedy)
" Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

" Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

= When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) «+q R(s,a,s’) + v max Q(s', a")
Modified Q-Update: Q(s,a) < R(s,a,s") +ymax f(Q(s',a"), N(s',a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function — Crawler

Regret

= Even if you learn the optimal policy,
you still make mistakes along the way

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Reinforcement Learning Overview

= Passive Reinforcement Learning (how to learn from experiences)

= Model-Based RL: Learn MDP model from experiences, then solve with value / policy iteration

= Model-Free RL: Skip learning MDP model, directly learn V or Q
= Value Learning: learn values of fixed policy & (Direct Evaluation or TD value learning)
Q-Learning: learn Q-values of optimal policy (Q-based version of TD learning)

@Active Reinforcement Learning (also decide how to collect experiences)

= Challenges: how to explore and minimize regret

@Approximate Reinforcement Learning (how to deal with large state spaces)

= Approximate Q-Learning
= Policy Search

Approximate Q-Learning

Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

" |n realistic situations, we cannot possibly learn

about every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

" |nstead, we want to generalize:
= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations
= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)],[Demo: Q-learning — pacman — tiny — silent train (L11D6)], [Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch All

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1 /(dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wif1(s) +wafo(s) + ...+ wnfn(s)
Q(87 CL) — ’UJ]_f]_(S, a’)+w2f2(87 a’)_l_ . '_I_wnfn(sa a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

= Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
a

Q(s,a) +— Q(s,a) + «[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: online least squares

Example:

Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) —]..OfGST(S,CL)

fDOT(S, NORTH) = 0.5

fasr(s,NORTH) = 1.0

) 4
o = NORTH o
r = —500
J N\

Q(s,NORTH) = +1

Q(Sla) =0

r + v max Q(s',a’) = -500+0
a

{difference = —501 >

wpor +— 4.0 + a[-501]0.5
WG ST < —1.04+ o [—501] 1.0

Q(S, (l) — 30fDOT(S, CL) — SOfGST(S, CL) [Demo: approximate Q-

learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

40

Linear Approximation: Regression™

20

f1(x)

Prediction: Prediction:

Yy = wo + wi f1(x) g = wo + wi f1(x) + wafo(x)

Optimization: Least Squares*

1

2
total error =) (y; — J;)° = > (yi — Zwﬁ(w))

. Error or “residual”
Observation Yy

Prediction jj

0 f1(x) i

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = <y - Zwkfm))
k
Wi, k

W = Wm + O (y - Zwkfk(@) fm(x)
k
Approximate g update explained:

Wm < Wm + & [7“ + max Q(S/a CL,) — Q(s, a)} fm(s,a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Reinforcement Learning Overview

= Passive Reinforcement Learning (how to learn from experiences)

= Model-Based RL: Learn MDP model from experiences, then solve with value / policy iteration

= Model-Free RL: Skip learning MDP model, directly learn V or Q
= Value Learning: learn values of fixed policy & (Direct Evaluation or TD value learning)
Q-Learning: learn Q-values of optimal policy (Q-based version of TD learning)

@Active Reinforcement Learning (also decide how to collect experiences)

= Challenges: how to explore and minimize regret

@Approximate Reinforcement Learning (how to deal with large state spaces)

= Approximate Q-Learning
= Policy Search

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

= E.g.your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= We'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function
" Nudge each feature weight up and down and see if your policy is better than before

" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!

" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

RL: Learning Locomotion

lteration O

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

Multi-Agent RL: Hide and Seek

[Emergent Tool Use From Multi-Agent Autocurricula. Baker et al. 2019]

Conclusion

= We’'re done with Part |: Search and Planning!

= We’'ve seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

= Next up: Part Il: Uncertainty and Learning!

