CS 188: Artificial Intelligence
Hidden Markov Models

University of California, Berkeley
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Reasoning over Time or Space

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring
" Language processing or generation

" Need to introduce time (or space) into our models



Today’s Topics

Very quick probability recap

Markov Chains & their Stationary Distributions
Hidden Markov Models (HMMs) formulation
Preview of Filtering with HMMs



Probability Recap

Conditional probability

Marginal probability

Product rule

Chain rule

P(X1,Xo,..

P(z) =) P(z,y)
Yy

P(z,y) = P(z|y)P(y)

. Xn) = P(X1)P(X2|X1)P(X3|X1,X2)...

mn
— H P(Xi|X17"'7Xi—1)
=1
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Markov Models

= Value of X at a given time is called the state

=)0 -~

P(X1) P(X3[X¢—1)

= Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action
= A'"growable” BN (can always use BN methods if we truncate to fixed length)



Conditional Independence

= Basic conditional independence:
= Past and future independent given the present
= Each time step only depends on the previous
= This is called the (first order) Markov property



Example Markov Chain: Weather

= States: X ={rain, sun}

= |nitial distribution: 1.0 sun

= CPT P(X; | Xi.q): Two new ways of representing the same CPT

Xe1 | X | P(XelXea) 0.3 0.9

sun | sun 0.9 ' " 0.9 "

u u
sun | rain 0.1 @ @ v
; 0
rain | sun 0.3 rain A cain
rain | rain 0.7 0.7 0.7

0.1



Example Markov Chain: Weather

» We know: P(X71) P(X¢X;_1)

0.9
0.3
= |nitial distribution: 1.0 sun @ @’
7

0. 0.1

" What is the probability distribution after one step?

P(X, =sun)=Y P(x1,Xp =sun)= )Y P(Xp = sun|xy)P(x1)
X1 X1

— +
P(X, = sun|Xy = rain)P(Xy1 = rain)

+ 0.3-0.0=0.9



Mini-Forward Algorithm

= Question: What’s P(X) on some day t?

O-O-D@ -

P(X1)= known
P(:Ct) = Z P(xy_q,x4)

Tt—1




Example Run of Mini-Forward Algorithm

" From initial observation of sun

(00) (o1) (e ) {oss ) =={o2s

P(X)) P(X5) P(X5) P(X,) P(X.)

" From initial observation of rain

(10) (o7) {os2) {oara ) =b{ozs)

P(X)) P(X5) P(X5) P(X) P(X.)

" From yet another initial distribution P(X,):

L) = {02

P(Xl) P(XOO) [Demo: L13D1,2,3]



Stationary Distributions

" For most chains: = Stationary distribution:
= |Influence of the initial distribution = The distribution we end up with is called
gets less and less over time. the stationary distribution F._of the
* The distribution we end up in is chain
independent of the initial distribution = |t satisfies

Poo(X) = Poy1(X) = ZP(X’:I:)POO(ZC)




Video of Demo Ghostbusters Basic Dynamics

P($t) — Z P(CIZt ‘ CCt_l)P(ZCt_l)




Video of Demo Ghostbusters Circular Dynamics

P($t) — Z P(CIZt ‘ CCt_l)P(ZCt_l)




Video of Demo Ghostbusters Whirlpool Dynamics

P(Clﬂ't) — Z P(Zlit ‘ CCt_l)P(ZCt_l)




Example: Stationary Distributions

= Question: What's P( X) at time t = infinity?

‘\: o, 00
= Pooia(X ZP X[r)P e ﬂi@
1, NedtDay
Poo( = P(sun|sun) Py (sun) —I—P(sun\fram)P (rain)

)
P (rain) = P(rain|sun)Ps (sun) + P(rain|rain) Py (rain)

| . Xea | Xe | P(XelX:q)
Py (sun) = 0.9P (sun) + 0.3 Px (rain) — T o5
Py (rain) = 0.1 Py (sun) + 0.7Px (rain) sun | rain | 0.1
Py (sun) = 3Py (rain) rain | sun 0.3
Py (rain) = 1/3 P (sun) :> Pm(sun) — 3/4 rain | rain 0.7
Also: P (sun) + Py (rain) = 1 Py (rain) =1/4

= Alternatively: run simulation for a long (ideally infinite) time



Application of Stationary Distribution: Diffusion Models

= Text-based image/art generation

* Dall-E 2, Imagen, StableDiffusion,
MidJourney, ...

in in an astronaut suit on saturn, artstation a propaganda poster depicting a cat dressed as french emperor teddybe: skateboard in times square
napol holding a picce of cheese

[C h r| St| a n B e | tra m |/M | d J 0 u rn ey] Figure 1: Selected 1024 x 1024 samples from a production version of our model. [O pe nA I ]



Application of Stationary Distribution: Diffusion Models

= Simulate (learned) Markov chain to reach stationary distribution
of plausible images

Space of all images

Space of plausible
images



Application of Stationary Distribution: Web Link Analysis

= PageRank over a web graph
= Each web page is a state

= |nitial distribution: uniform over pages

" Transitions:

= With prob. ¢, uniform jump to a

random page (dotted lines, not all shown)
= With prob. 1-c, follow a random

outlink (solid lines)

= Stationary distribution
= Will spend more time on highly reachable pages
= E.g. many ways to get to the Acrobat Reader download page
= Somewhat robust to link spam

= Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting
less important over time)
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Hidden Markov Models




Pacman — Sonar
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[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman — Sonar (no beliefs)




Video of Demo Pacman — Sonar (with beliefs)




Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs)

= Underlying Markov chain over states X
= You observe outputs (effects) at each time step

OasOnOn Ol




Example: Weather HMM

P(X: | Xioq)
Raing., Rain, Raing. [ ( [/ fi (
[ /11y
P(E; | Xy)
= An HMM is defined by: R | B JPRAR) | R U ) PR

= |nitial distribution: P(X1) A B Tl 99
.y +r -r 0.3 +r -u 0.1

. .
Tra.nS|.t|ons. P(X; | Xi—1) T T o3 P I
= Emissions: P(E; | X3) S+ | o7 1wl os




Example: Ghostbusters HMM

P(X,) = uniform 1/9|1/9|1/9
1/9|1/9|1/9

P(X|X") = usually move clockwise, but

sometimes move in a random direction or 1/911/9|1/9

stay in place

ynp P(Xy)
P(R;;|X) = same sensor model as before: X" = —
red means close, green means far away. [ 1/6 | 14-p1/2
OO | o]

P(X|X" =<1,2>)

[Demo: Ghostbusters — Circular Dynamics — HMM (L14D2)]



Video of Demo Ghostbusters — Circular Dynamics -- HMM




Conditional Independence

HMMs have two important independence properties:

= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state

Does this mean that evidence variables are guaranteed to be independent?

= [No, they are correlated by the hidden state]



Real HMM Examples

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:

= QObservations are words (tens of thousands)
= States are translation options

" Robot tracking:

= QObservations are range readings (continuous)
= States are positions on a map (continuous)



Example: Modeling Text with Sequence Models

Large language models: GPT3, PalLM, ...

John St Clair Etouffee, world-renowned art expert, connoisseur, aesthete, art historian, and lecturer at
the University of Oxford, is walking around the Louvre, savoring the exquisite artwork of all ages as-
sembled before him. The Louvre is closed, allowing him free access to all the paintings and silence in
which to meditate them. He stops in front of La Gioconda, Leonardo da Vinci’s world-famous Mona Lisa.
After a time, he begins to speak and describe the qualia, the frisson, the nigh-indescribable experience
of the subtle swirls & sfumato of the painting:

"The sun is now barely a foot or two below the horizon and with every second, the golden tone of the
painting deepens. Everything melts in it. I, who am having this experience, appear to you in a little corner
of the painting and I look at you through the painting and our eyes meet. Our arms, our shoulders, our
heads, our hands, our necks, our mouths, our lips, our eyes, our fingers and the tips of our toes—all this
transforms itself into bright, beauteous colour. Everything becomes alive, all there is left in me is love and
appreciation. It makes me want to shout at you “Don’t leave!” but you don’t hear me and I remain silent. La
Gioconda looks at me and I at La Gioconda, the same as before, but now it’s like being in two places at the
same time and my feet have no feeling."

St. Clair Etouffee leaves the painting and enters the Hall of the Kings, and of Kings. He moves on to the
Indian Wars, passes the Saloon d’Orléans, the King of Britain with his Tudor and Stuart wives, and is re-
minded of what St Clair had read a lifetime earlier at the age of twelve in a book about medieval paintings



Example: Modeling Text with Sequence Models

= Learn probability of a word given previous word? @ @ @ @ s

P(X¢|X¢—1)

" Learn parameters of a Hidden Markov Model?
P(X1) P(X:t| Xi-1) P(E:| Xy)
" Learn probability of a word given all previous words?

P(X;|X1,..., X5-1)
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Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution
B.(X) = P(X; | e, ..., &) (the belief state) over time

We start with B,(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the

Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

N
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall,
never more than 1 mistake

Motion model: may not execute action with small prob.



Example: Robot Localization

S
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake




Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Inference: Find State Given Evidence

= We are given evidence at each time and want to know
Bi(X) = P(X¢le1:t)

" |dea: start with P(X;) and derive B, in terms of B, ,

= equivalently, derive B,,, in terms of B,



Two Steps: Passage of Time + Observation

B(Xy) = P(X¢le1:) B'(Xi11) =Y P(X'|z)Blay)

()~()——()
é é é B(Xi11) <x,y Ple1]|Xep1) B (Xea




Pacman — Sonar
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[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman — Sonar (with beliefs)




Next Time: Filtering



