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Reasoning over Time or Space

§ Often, we want to reason about a sequence of observations
§ Speech recognition

§ Robot localization
§ User attention

§ Medical monitoring
§ Language processing or generation

§ Need to introduce time (or space) into our models



Today’s Topics

§ Very quick probability recap
§ Markov Chains & their Stationary Distributions
§ Hidden Markov Models (HMMs) formulation
§ Preview of Filtering with HMMs



Probability Recap

§ Conditional probability

§ Marginal probability

§ Product rule

§ Chain rule 
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Markov Models

§ Value of X at a given time is called the state

§ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

§ Stationarity assumption: transition probabilities the same at all times
§ Same as MDP transition model, but no choice of action
§ A "growable” BN (can always use BN methods if we truncate to fixed length)

X2X1 X3 X4



Conditional Independence

§ Basic conditional independence:
§ Past and future independent given the present
§ Each time step only depends on the previous
§ This is called the (first order) Markov property

X2X1 X3 X4



Example Markov Chain: Weather

§ States: X = {rain, sun}
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Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):



Example Markov Chain: Weather

§ Initial distribution: 1.0 sun
§ We know:

§ What is the probability distribution after one step?

rain sun
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P(X2 = sun)= Â
x1

P(x1, X2 = sun)= Â
x1

P(X2 = sun|x1)P(x1)



Mini-Forward Algorithm

§ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)



Example Run of Mini-Forward Algorithm

§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

[Demo: L13D1,2,3]



§ Stationary distribution:
§ The distribution we end up with is called 

the stationary distribution   of the 
chain

§ It satisfies

Stationary Distributions

§ For most chains:
§ Influence of the initial distribution 

gets less and less over time.
§ The distribution we end up in is 

independent of the initial distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1



Video of Demo Ghostbusters Basic Dynamics
P (xt) ==

X

xt�1

P (xt | xt�1)P (xt�1)



Video of Demo Ghostbusters Circular Dynamics
P (xt) ==

X

xt�1

P (xt | xt�1)P (xt�1)



Video of Demo Ghostbusters Whirlpool Dynamics
P (xt) ==

X

xt�1

P (xt | xt�1)P (xt�1)



Example: Stationary Distributions

§ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:

§ Alternatively: run simulation for a long (ideally infinite) time

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)



Application of Stationary Distribution: Diffusion Models

§ Text-based image/art generation
§ Dall-E 2, Imagen, StableDiffusion, 

MidJourney, …

[OpenAI][Christian Beltrami/MidJourney]



Space of all images

Application of Stationary Distribution: Diffusion Models

§ Simulate (learned) Markov chain to reach stationary distribution 
of plausible images

Space of plausible 
images



Application of Stationary Distribution: Web Link Analysis

§ PageRank over a web graph
§ Each web page is a state
§ Initial distribution: uniform over pages
§ Transitions:

§ With prob. c, uniform jump to a
random page (dotted lines, not all shown)

§ With prob. 1-c, follow a random
outlink (solid lines)

§ Stationary distribution
§ Will spend more time on highly reachable pages
§ E.g. many ways to get to the Acrobat Reader download page
§ Somewhat robust to link spam
§ Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time)
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Hidden Markov Models



Pacman – Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (no beliefs)



Video of Demo Pacman – Sonar (with beliefs)



Hidden Markov Models

§ Markov chains not so useful for most agents
§ Need observations to update your beliefs

§ Hidden Markov models (HMMs)
§ Underlying Markov chain over states X
§ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

§ An HMM is defined by:
§ Initial distribution:
§ Transitions:
§ Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)



Example: Ghostbusters HMM

§ P(X1) = uniform

§ P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

§ P(Rij|X) = same sensor model as before:
red means close, green means far away.
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[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]



Video of Demo Ghostbusters – Circular Dynamics -- HMM



Conditional Independence

§ HMMs have two important independence properties:

§ Markov hidden process: future depends on past via the present

§ Current observation independent of all else given current state

§ Does this mean that evidence variables are guaranteed to be independent?

§ [No, they are correlated by the hidden state]
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Real HMM Examples

§ Speech recognition HMMs:
§ Observations are acoustic signals (continuous valued)
§ States are specific positions in specific words (so, tens of thousands)

§ Machine translation HMMs:
§ Observations are words (tens of thousands)
§ States are translation options

§ Robot tracking:
§ Observations are range readings (continuous)
§ States are positions on a map (continuous)



Large language models: GPT3, PaLM, …

Example: Modeling Text with Sequence Models



§ Learn probability of a word given previous word?

§ Learn parameters of a Hidden Markov Model?

§ Learn probability of a word given all previous words?

Example: Modeling Text with Sequence Models

X2X1 X3 X4

X2

E1

X1 X3 X4

E2 E3 E4

P (Xt | Xt�1) P (Et | Xt)
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Filtering / Monitoring

§ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

§ We start with B1(X) in an initial setting, usually uniform

§ As time passes, or we get observations, we update B(X)

§ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program



Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, 

never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Find State Given Evidence

§ We are given evidence at each time and want to know

§ Idea: start with P(X1) and derive Bt in terms of Bt-1
§ equivalently, derive Bt+1 in terms of Bt



Two Steps: Passage of Time + Observation

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)



Pacman – Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (with beliefs)



Next Time: Filtering


