Announcements

If you want to discuss anything post-midterm, sign up for a
1:1 session (link in Ed)

Project 4 checkpoint due today (Nov 1) at 11:59pm PT
= Rest of Project 4 due next Tuesday (Nov 8) at 11:59pm PT

Homework 8 due this Friday (Nov 4) at 11:59pm PT
Discussion attendance credit has been updated

No lecture on Thanksgiving week (Nov 22). Enjoy a break!



CS 188: Artificial Intelligence
HMMs, Particle Filters, and Applications

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS$88 materials are available at http://ai.berkeley.edu.]



Today’s Topics

Exact Inference in Hidden Markov Models (HMMs)
Approximate Inference in HMMs via Particle Filtering
Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets



[Demo: Ghostbusters Markov Model (L15D1)]
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HMM Inference: Find State Given Evidence

= We are given evidence at each time and want to know
Bi(X) = P(X¢le1:t)

" |dea: start with P(X,) and derive B, in terms of B, ;
= equivalently, derive B,,, in terms of B,



Two Steps: Passage of Time + Observation

B(Xt) = P(Xyle1r) B'(Xep
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Passage of Time: Base Case

@

=

P(X5)

P(zp) =) P(z1,22)

= > P(z1)P(z2|z1)



Passage of Time: General Case

= Assume we have current belief P(X | evidence to date) and transition prob.

B(X) = P(Xler)  P(Xipala) %D—»%D—»%;—»? SEEN
= Then, after one time step passes:

P(Xt—|—1 ’61;75) — ZP(Xt+17CUt‘€1:t)

Lt

= ZP Xit1|ze, er:) Paeler) = Or compactly:

- ZP Xt+1’33t) (ft\fil:t) B'(X¢41) = ZP(XtH\xt)B(act)

= Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes



Example: Passage of Time

= As time passes, uncertainty “accumulates’ (Transition model: ghosts usually go clockwise)
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Two Steps: Passage of Time + Observation

B(Xt) = P(Xyle1r) B'(Xep
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Observation: Base Case

P(X1le1)

P(xile1) = P(x1,e1)/P(e1)
o x, P(x1,e1)

= P(x1)P(e1|r1)



Observation: General Case

= Assume we have current belief P(X | previous evidence) and evidence model:

B'(Xi41) = P(Xiqalere)  Plers1]Xet1) G (o)) (o) ---»
= Then, after evidence comes in:
P(Xiyilerip1) = P(Xig1, erq1lert)/Plesyilers) é é é
XXi41 P(Xt+17€t+1\€1:t)
= P(€t+1 elztaXt—l—l)P(Xt—|—1|€1:t)
= P(ei1| Xe41)P(Xiy1lers)

= Basicidea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence
B(Xi41) o<x,y, Plett1]X41)B (Xit1) = Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases’

Before observation After observation

B(X) «x P(e|X)B'(X)




Two Steps: Passage of Time + Observation

B(Xt) = P(Xyle1r) B'(Xep
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Online Belief Updates

Every time step, we start with current P(X | evidence)

We update for time:

P(xileri—1) = Y P(zy_1ler:t—1) - P(we|wi—1) @_»@

Lt—1

We update for evidence: @

P(x¢ler+) xx P(xiler+—1) - Plet|xt)

This is our updated belief Bi(X) = P(X¢|e1:+)
The forward algorithm does both at once (and doesn’t normalize)



The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:t)

= We can derive the following updates

We can normalize as we go if we
want to have P(x|e) at each time

P(xtlel t) OCXtP(ajb €1:t)  ‘ step, or just once at the end...

= > P(z4_1,2t,€1:¢)

Lt—1

= Y P(zy_1,e1:4-1)P(zt|zi—1)P(et]xt)
Ti—1

= P(et|zt) > P(at|lewi—1)P(xi—1,€1:4-1)

Lt—1

[Demo: Ghostbusters Exact Filtering (L15D2)]



Video of Ghostbusters Filtering




Online Belief Updates

Every time step, we start with current P(X | evidence)

We update for time:

P(xileri—1) = Y P(zy_1ler:t—1) - P(we|wi—1) @_»@

Lt—1

We update for evidence: @

P(x¢ler+) xx P(xiler+—1) - Plet|xt)

This is our updated belief Bi(X) = P(X¢|e1:+)
The forward algorithm does both at once (and doesn’t normalize)



Today’s Topics

Exact Inference in Hidden Markov Models (HMMs)
Approximate Inference in HMMs via Particle Filtering
Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample
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Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << | X]|
= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

Particles:
(3,3)




Particle Filtering: Passage of Time

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)

Particles:
(3,2)
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Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) < P(e|X)B'(X)
As before, the probabilities don’t sum to one,

since all have been down-weighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:

-
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Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

* This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

Weight

= Particles: track samples of states rather than an explicit distribution
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[Demos: ghostbusters particle filtering (L15D3,4,5)]



Video of Demo — Moderate Number of Particles




Video of Demo — One Particle




Video of Demo — Huge Number of Particles




Today’s Topics

Exact Inference in Hidden Markov Models (HMMs)
Approximate Inference in HMMs via Particle Filtering
Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets



Robot Localization

" |n robot localization:

= We know the map, but not the robot’s position

= QObservations may be vectors of range finder readings

DIRECTORY
= State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)

Global localization with
© SONAr SENSOrs '




Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMM:s) ~—— *4
and particle methods | |
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DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 1

[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Today’s Topics

Exact Inference in Hidden Markov Models (HMMs)
Approximate Inference in HMMs via Particle Filtering
Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

" |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3

= Dynamic Bayes nets are a generalization of HMMs
[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman — Sonar (P4)
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[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman Sonar Ghost DBN Model




Conclusion

= We're done with Part |I: Uncertainty!

= \We’ve seen how Al methods for:

= Representing uncertainty structure via Bayes Nets and multiple ways of doing
inference

" |ncorporating decision-making with uncertainty via Decision Nets

= Exploiting special structure of sequences / time via Markov Models and
Hidden Markov Models and exact and approximate inference

= Next up: Part lll: Machine Learning!



