Announcements

- If you want to discuss anything post-midterm, sign up for a
 1:1 session (link in Ed)
- Project 4 checkpoint due today (Nov 1) at 11:59pm PT
 Rest of Project 4 due next Tuesday (Nov 8) at 11:59pm PT
- Homework 8 due this Friday (Nov 4) at 11:59pm PT
- Discussion attendance credit has been updated
- No lecture on Thanksgiving week (Nov 22). Enjoy a break!

CS 188: Artificial Intelligence HMMs, Particle Filters, and Applications

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today's Topics

Exact Inference in Hidden Markov Models (HMMs)

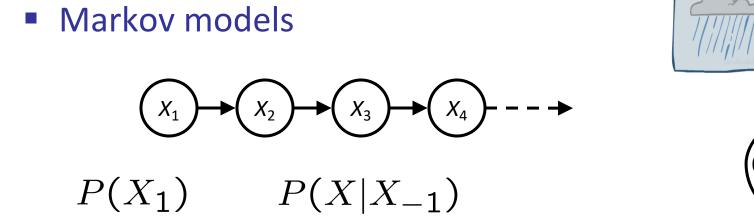
Approximate Inference in HMMs via Particle Filtering

Applications in Robot Localization and Mapping

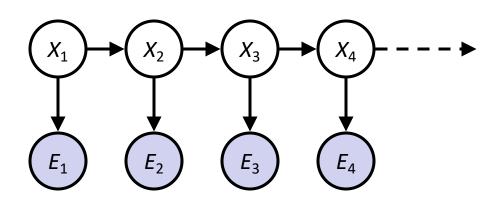
Brief overview of Dynamic Bayes Nets

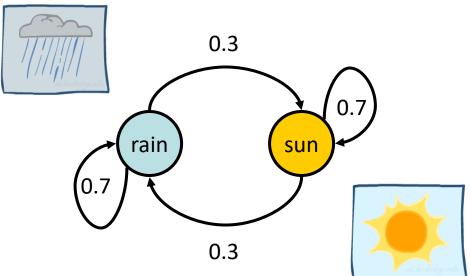
[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time



Hidden Markov models





P(E|X)

X	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

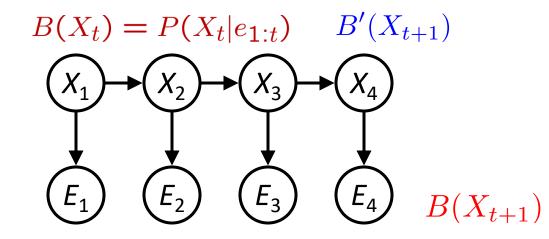
HMM Inference: Find State Given Evidence

We are given evidence at each time and want to know

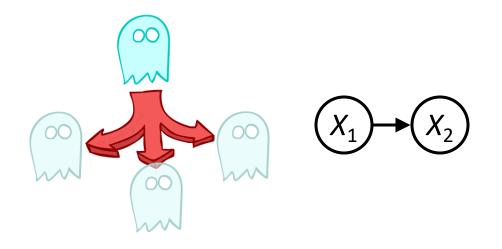
$$B_t(X) = P(X_t | e_{1:t})$$

- Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 - equivalently, derive B_{t+1} in terms of B_t

Two Steps: Passage of Time + Observation



Passage of Time: Base Case



 $P(X_2)$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time: General Case

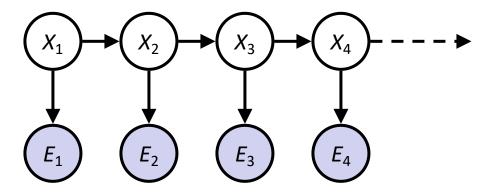
Assume we have current belief P(X | evidence to date) and transition prob.

$$B(X_t) = P(X_t | e_{1:t}) \qquad P(X_{t+1} | x_t)$$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$



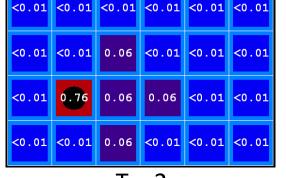
- Or compactly:
 - $B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t) B(x_t)$
- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

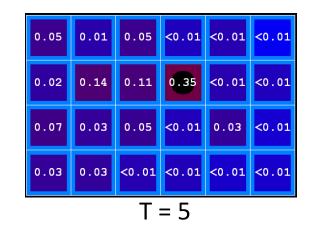
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

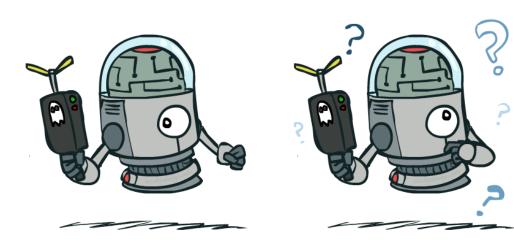
As time passes, uncertainty "accumulates"

T = 1

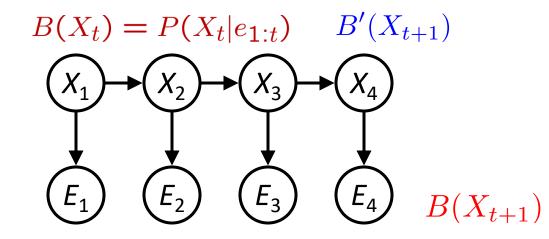


T = 2

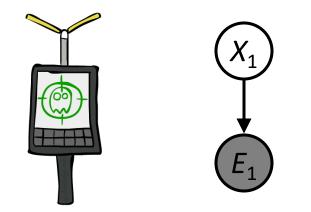




Two Steps: Passage of Time + Observation



Observation: Base Case



$P(X_1|e_1)$

 $P(x_1|e_1) = P(x_1, e_1) / P(e_1)$ $\propto_{X_1} P(x_1, e_1)$ $= P(x_1) P(e_1|x_1)$

Observation: General Case

Assume we have current belief P(X | previous evidence) and evidence model:

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t}) \qquad P(e_{t+1}|X_{t+1}).$

• Then, after evidence comes in:

$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})} \\ \propto_{X_{t+1}} \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(X_{t+1}, e_{t+1}|e_{1:t})}$$

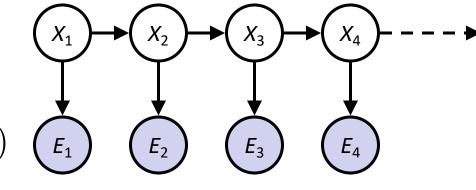
$$= P(e_{t+1}|e_{1:t}, X_{t+1}) P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize



Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

 $B(X) \propto P(e|X)B'(X)$

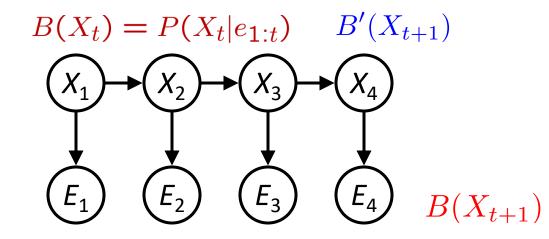
0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

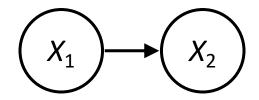
Two Steps: Passage of Time + Observation



Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

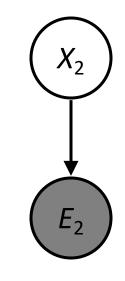
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$



• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

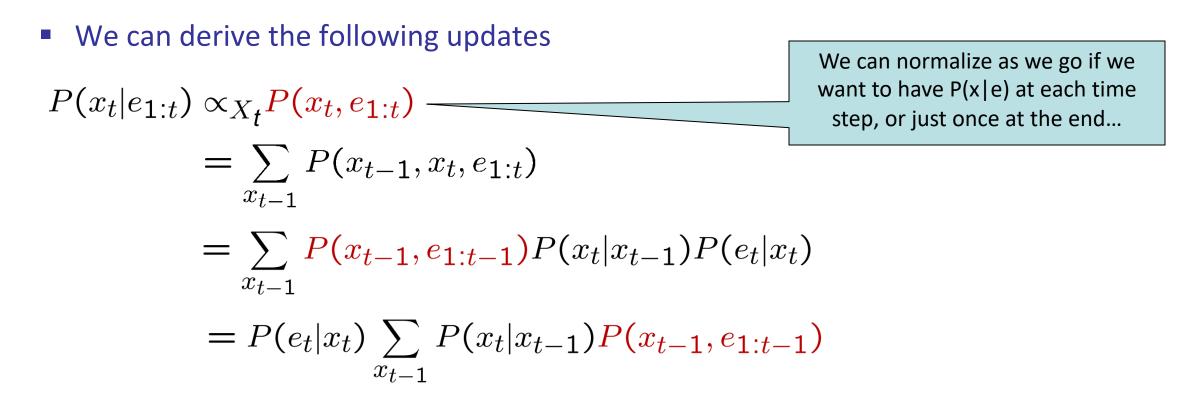
- This is our updated belief $B_t(X) = P(X_t | e_{1:t})$
- The forward algorithm does both at once (and doesn't normalize)



The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$



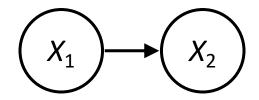
[Demo: Ghostbusters Exact Filtering (L15D2)]

Video of Ghostbusters Filtering

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

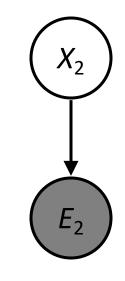
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$



• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

- This is our updated belief $B_t(X) = P(X_t | e_{1:t})$
- The forward algorithm does both at once (and doesn't normalize)



Today's Topics

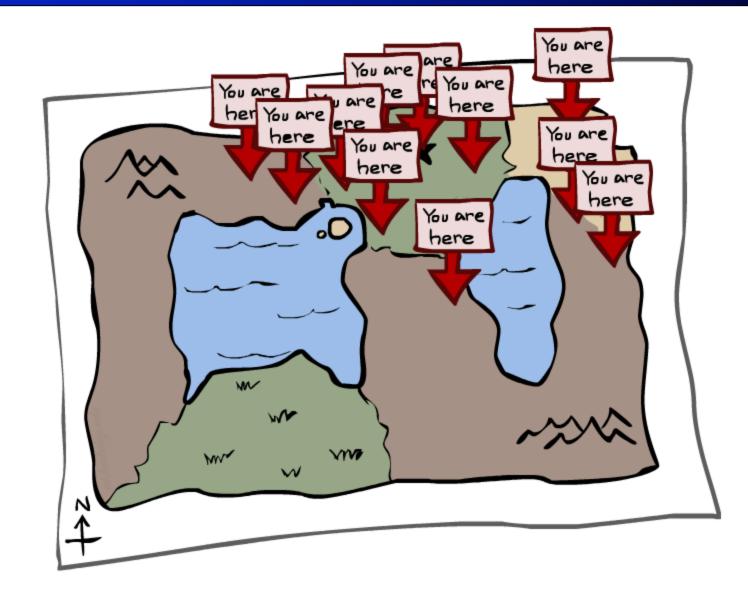
Exact Inference in Hidden Markov Models (HMMs)

Approximate Inference in HMMs via Particle Filtering

Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets

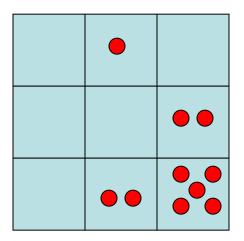
Particle Filtering



Particle Filtering

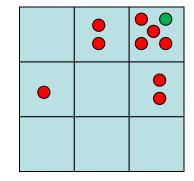
- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1



Particles: (3,3)

> (2,3) (3,3) (3,2) (3,3)

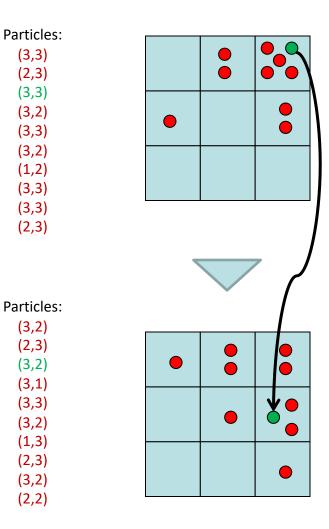
(3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Passage of Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2) (2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3)(3,2) (2,2)

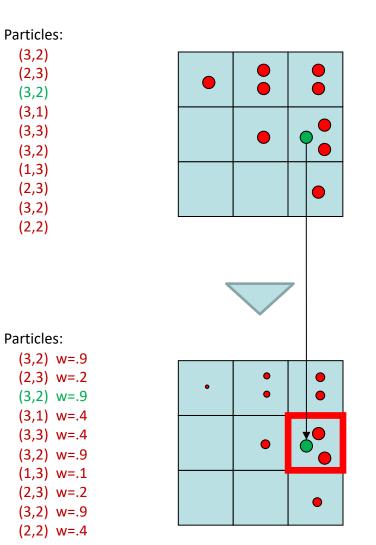
Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been down-weighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

Particles:

(3,2) w=.9

(2,3) w=.2 (3,2) w=.9 (3,1) w=.4

(3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

(New) Particles:

(3,2) (2,2)

(3,2) (2,3)

(3,3) (3,2) (1,3) (2,3) (3,2) (3,2)

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

0

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

	Elapse	Weight	Resample
Particles: (3,3) (2,3) (3,2) (3,2) (3,2) (3,2) (3,2) (1,2)	Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (3,2) (1,3)	Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4 (3,2) w=.9 (1,3) w=.1	(New) Particles: (3,2) (2,2) (3,2) (2,3) (3,3) (3,2) (3,2) (1,3)
(3,3) (3,3) (2,3)	(2,3) (3,2) (2,2)	(2,3) w=.2 (3,2) w=.9 (2,2) w=.4	(2,3) (3,2) (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Today's Topics

Exact Inference in Hidden Markov Models (HMMs)

Approximate Inference in HMMs via Particle Filtering

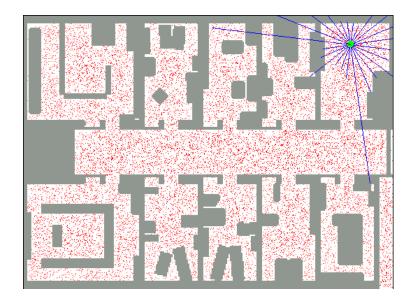
Applications in Robot Localization and Mapping

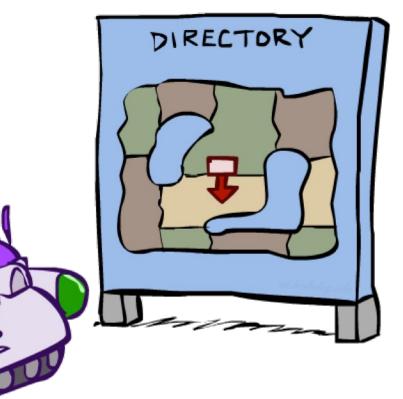
Brief overview of Dynamic Bayes Nets

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

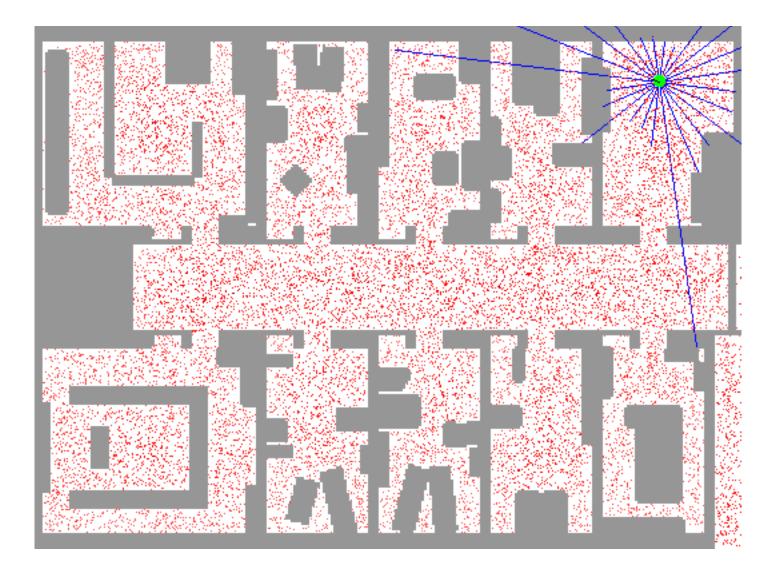




Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

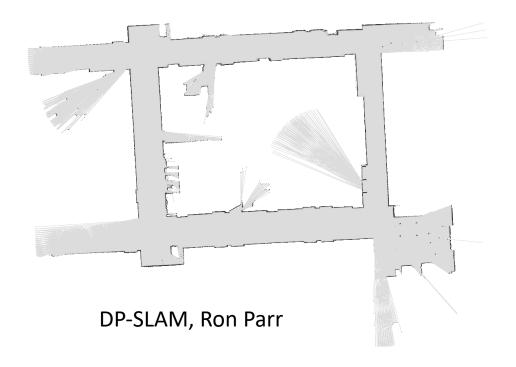
Particle Filter Localization (Laser)

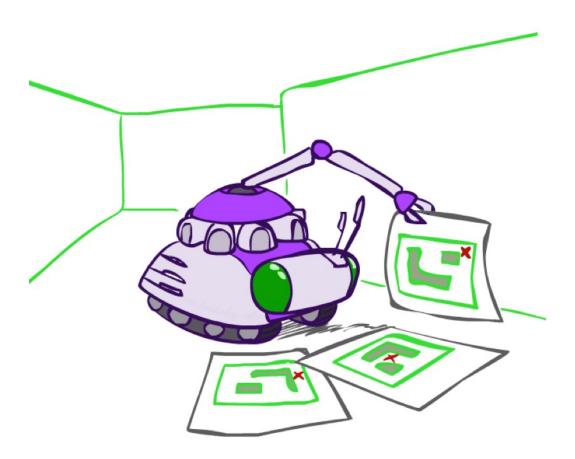


[Video: global-floor.gif]

Robot Mapping

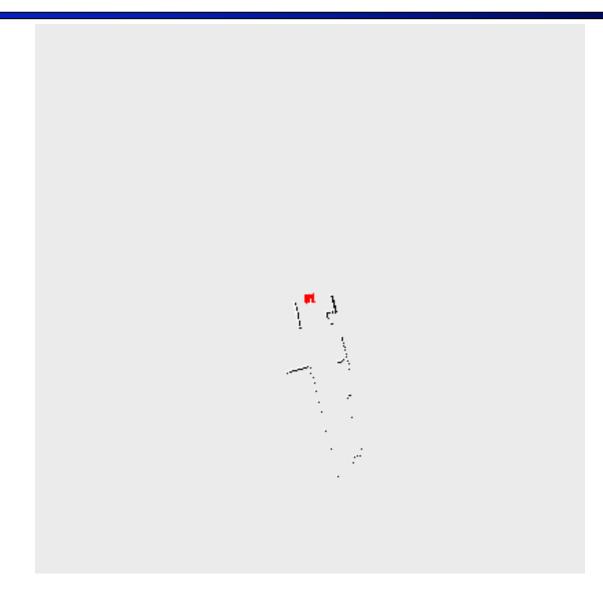
- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods





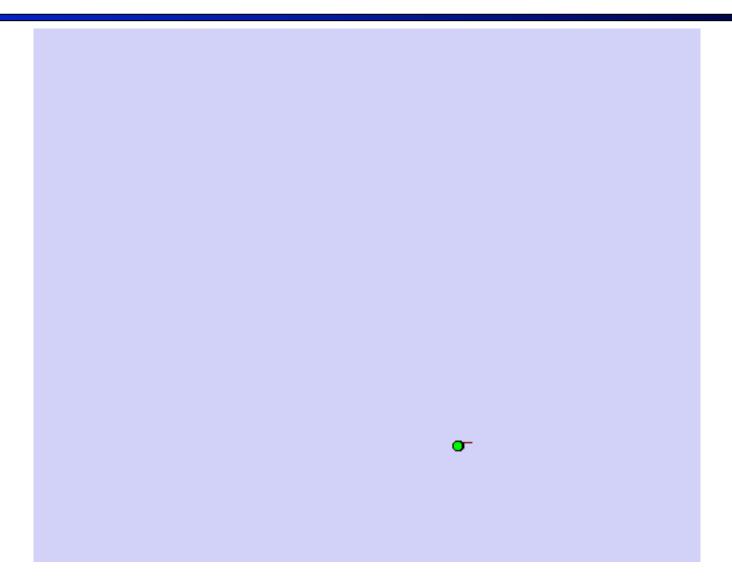
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1



[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2



[Demo: PARTICLES-SLAM-fastslam.avi]

Today's Topics

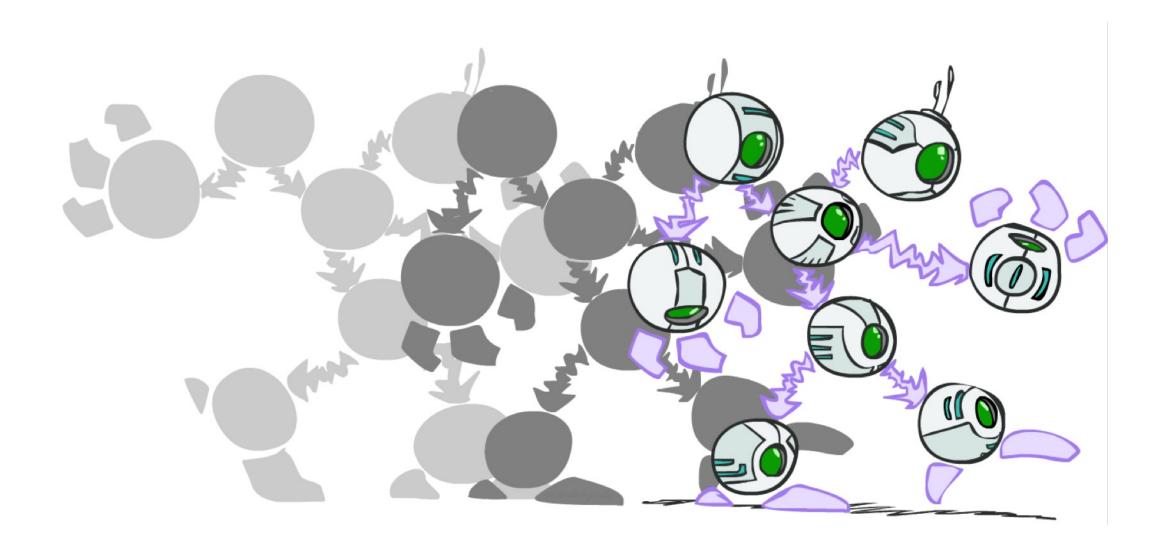
Exact Inference in Hidden Markov Models (HMMs)

Approximate Inference in HMMs via Particle Filtering

Applications in Robot Localization and Mapping

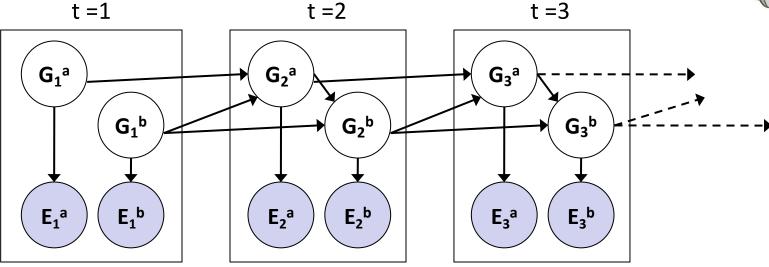
Brief overview of Dynamic Bayes Nets

Dynamic Bayes Nets

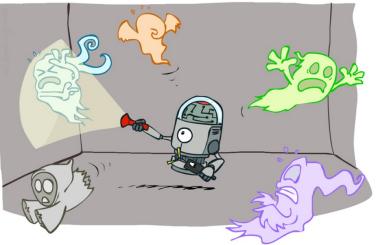


Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1



Dynamic Bayes nets are a generalization of HMMs



[Demo: pacman sonar ghost DBN model (L15D6)]

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman Sonar Ghost DBN Model

Conclusion

- We're done with Part II: Uncertainty!
- We've seen how AI methods for:
 - Representing uncertainty *structure* via Bayes Nets and multiple ways of doing inference
 - Incorporating decision-making with uncertainty via **Decision Nets**
 - Exploiting special structure of sequences / time via Markov Models and Hidden Markov Models and exact and approximate inference
- Next up: Part III: Machine Learning!