
CS 188: Artificial Intelligence
Perceptrons, Logistic Regression and Optimization

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine.  All CS188 materials are at http://ai.berkeley.edu.]



Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.

“When an axon of cell A is near enough to excite cell B 
and repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or 
both cells such that A's efficiency, as one of the cells firing 
B, is increased.”

Hebb (1949)



Example: Perceptron

§ Separable Case



Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer, raise 

score of right answer



Example: Multiclass Perceptron

Iteration 0: x: “win the vote” f(x): [1 1 0 1 1]   y*: politics 

Iteration 1: x: “win the election” f(x): [1 1 0 0 1]   y*: politics 

Iteration 2: x: “win the game” f(x): [1 1 1 0 1]   y*: sports

BIAS

win

game

vote

the

1

0

0

0

0

1𝑤 ⋅ 𝑓 𝑥 :

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

1

1

0

1

1

3

1

1

0

1

1

3

0

0

-1

1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Properties of Perceptrons

§ Separability: true if some parameters get the training set 
perfectly correct

§ Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over time 

can help (averaged perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability going to 1
§ If  very negative à want probability going to 0

§ Example:

z = w · f(x)
z = w · f(x)

z = w · f(x)

𝑧 = 0

𝑤

𝑓(𝑥)



How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability going to 1
§ If  very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

=
𝑒!

𝑒! + 1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability going to 1
§ If  very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



𝑤 = 10

𝑤 = 1

A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

𝑃 𝑟𝑒𝑑 𝑥 ;𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒!"⋅$(&)

𝑤 = ∞



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:       z	=

§ Prediction highest score wins

§ How to make the scores into probabilities? 

§ In general:  softmax 𝑧), . . . , 𝑧* + =
,!"

∑# .
!#

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:       z	=

§ Prediction highest score wins

§ How to make the scores into probabilities? 

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Logistic Regression: Learning

§ Have probabilistic model 𝑃 𝑦 𝑥;𝑤
§ How to find best 𝑤?
§ Maximum likelihood estimation: find 𝑤 that maximizes P D 𝑤

§ Dataset: input-output pairs x(+), 𝑦(+) that are indep. and identically distributed (i.i.d)

𝑃 𝐷 𝑤 =8
+

𝑃(𝑥(+), 𝑦(+)|𝑤) =8
+

𝑃(𝑦 + |𝑥 + ; 𝑤)

§ Optimization problem:

;𝑤 = argmax
1

𝑃 𝐷|𝑤 = argmax
1

log 𝑃(𝐷|𝑤) = argmax
1

∑+ log 𝑃(𝑦 + |𝑥 + ; 𝑤)

𝑃 𝑥 ! , 𝑦 ! 𝑤 = 𝑃(𝑦 ! |𝑥 ! ; 𝑤) ⋅ 𝑃(𝑥(!)|𝑤)

Assume 𝑃(𝑥(!)|𝑤) is uniform



Best w for Logistic Regression 

§ Given data pairs x("), 𝑦(") maximize log-likelihood:

with: P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

0𝑤 = argmax
"

∑( log 𝑃(𝑦 ( |𝑥 ( ; 𝑤)



Best w for Multi-Class Logistic Regression 

§ Given data pairs x("), 𝑦(") maximize log-likelihood:

with:

0𝑤 = argmax
"

∑( log 𝑃(𝑦 ( |𝑥 ( ; 𝑤)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))



How do we maximize functions?

In general, cannot always take derivative and set to 0

Use numerical optimization!

0𝑤 = argmax
"

∑( log 𝑃(𝑦 ( |𝑥 ( ; 𝑤)



Hill Climbing

Recall from CSPs lecture: simple, general idea
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



1-D Optimization

Could evaluate and
Then step in best direction

Or, evaluate derivative:

Tells which direction to step into



2-D Optimization

Source: offconvex.org Source: REI



Gradient Ascent

Perform update in uphill direction for each coordinate
The steeper the slope (i.e. the higher the derivative) the bigger the step 
for that coordinate

E.g., consider: 

Updates: ▪ Updates in vector notation:

with: = gradient



Idea: 
Start somewhere
Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



Gradient in n dimensions



Optimization Procedure: Gradient Ascent

init
for iter = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be 
chosen carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes       about 0.1 – 1 %



Batch Gradient Ascent on the Log Likelihood Objective

init 
for iter = 1, 2, …



Stochastic Gradient Ascent on the Log Likelihood Objective

init 
for iter = 1, 2, …

pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

init 
for iter = 1, 2, …

pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



What will gradient ascent do in multi-class logistic regression?

adds f to the correct 
class weights

for y’ weights:

subtracts f from y’ weights in proportion to 
the probability current weights give to y’



Next Week: Neural Networks



What is the Steepest Direction?*

First-Order Taylor Expansion:

Steepest Ascent Direction:

Recall: �

Hence, solution: Gradient direction = steepest direction!


