Announcements

Project 5 due Tueday, Nov 29 at 11:59pm PT

Strike is underway

Homework 9 deadline postponed

Homework 10 release and deadline postponed

Online, emergency-only office hours

" 6:30-8:00pm Tu/Th (Peyrin & Igor)

= 5:00-6:30pm M/W (Peyrin)

Everyone gets 1 discussion participation credit this week
Lectures are online-only for duration of strike

CS 188: Artificial Intelligence

Optimization and Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Multiclass Logistic Regression

= Recall Multi-Class Perceptron:
= A weight vector for each class: wy

= Score (activation) ofaclassy: z, =Wy - f(a:)

= Prediction highest score wins

" How to make the scores into probabilities?

P(y|x;w) =

ey

Diyr €Y

y = arg max wy - f(x)
Y

= softmax(z, ...

w1y - f biggest
w1
w
wo 3
wo - f w3 - f
biggest biggest
) Zn)y
eZi
softmax(z,, ..., Zy)i =

Reminder: Best w for Multi-Class Logistic Regression

= Given data pairs X(i),y(i) maximize log-likelihood:

W = argmax Y,; log P(y D |x®; w)
w

" Use numerical optimization inspired by hill climbing /@g

* General problem: W = argmax g(w)
w

= Derivative of the function ﬁ tells us which direction to step into

1-D and 2-D Optimization

Source: offconvex.org

Gradient Ascent

Perform update in uphill direction for each coordinate

The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

E.g., consider: g(wq, wo)

Updates: = Updates in vector notation:
dg

wl%’w1+04*3—w1(w17w2) w4 w+ ax Vyg(w)

Jg 9
Wy <= W2 + Q* 8—w2(wla w2) with: V,,g(w) = !3531 (w)] = gradient

Gradient Ascent

ldea:
Start somewhere
Repeat: Take a step in the gradient direction

-2}

-3} ' —]

—4}- Bl -

—5L 1

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

Init w
for iter =1, 2, ..

wew+a-Vg(w)

= o learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
= Crude rule of thumb: update changes 11) about 0.1 -1 %

Learning Rate

Choice of learning rate a is a hyperparameter
Example: a=0.001 (too small)

(CL)) Starting Point

Optimum

Solution

Source: https://distill.pub/2017/momentum/

Learning Rate

Choice of step size ais a hyperparameter
Example: a=0.004 (too large)

((L)) starting Point
-/

/

Optimum

O
—

Solution

Source: https://distill.pub/2017/momentum/

Gradient Ascent with Momentum™®

= Often use momentum to improve gradient ascent convergence

Gradient Ascent: Gradient Ascent with momentum:
Init w Init w
for iter =1, 2, .. for iter =1, 2,
wew+a- Vg(w) zZ<f- Z+Vg(w)
Wew-+a:-z

= One interpretation: w moves like a particle with mass
= Another: exponential moving average on gradient

Gradient Ascent with Momentum™®

Example: a=0.001 and $=0.0

41 Starting Point

Optimum

Solution

Source: https://distill.pub/2017/momentum/

Gradient Ascent with Momentum™®

Example: a=0.001 and $=0.9

41) Starting Point

Optimum

" Solution

Source: https://distill.pub/2017/momentum/

Batch Gradient Ascent on the Log Likelihood Objective

max [l(w) = max ZlogP(y(i”x(i);w)

w

\ J

g(w)

init U
for iter =1, 2, ..

W W+ o % Z V log P(y'9 |z w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i”x(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

init W
for iter =1, 2,

pick random j

w4 w4 ax Viog P(yW |z w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i”x(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

init
for iter =1, 2,
pick random subset of training examples J

W — W+ @ * ZVIogP(y(j)\a;(j);w]
j€J

Neural Networks

Multi-class Logistic Regression
= special case of neural network

e~
el + e*2 + e*3

2, —> 8 —— Plulrw) =

e?2?

Zy > >
e*1 + e*2 + e*3

— Py2lz;w) =

e*s
el + e*2 + e*3

X o 83 Hh O

z3 — P(ys|z;w) =

zZj = zwi,j filx) = wy - f(x)
J

Deep Neural Network = Also learn the features!

f1(x)

ez
z [8 — Pllsw) = o0
f5(x) ©
f
z, 1 Y P(plnw) = .
f3(x) m €*1 + e*2 4 e*3
a
X e

Z3 ’ P(y3‘x7w) - e?1 4 e?2 4 73

fi(x)

Deep Neural Network = Also learn the features!

(1) (2) Z(n—l?

Z—I Z] 1 f1(x)
o o AU —» s | —» P(yi|z;w)
1 2
Zo 2 Hn=1) ,(x) o)
’ £
" t .
(1) (2) (n-1) f AU —— © L P(ya]a;w)
23 23 23 3(x) m
a
LOUT—> * L Plys|z;w
Z(l) Z(Q) (n—1) fe(x)

K (1) K (2] 2 (n—1)

Deep Neural Network

Zél) Z§2)
A
ey ,(2)
Z () R (2)

““)—QZW L), (=13

g= nonllnear activation function

Z](n—N 21(”')
OUTL__» s L5 Pyla;w)
n)
(n—1) Z(O
z
2 2 £
(1) () OUT— & s P(yfz;w)
3 3 m
a
OUT—s = s P(ysla;w]
(n—l) (n)
FR(n—1) K(n)

* Neural network with n layers
- z(B): activations at layer k
- W&-LE): weights taking activations from layer k-1 to layer k

Deep Neural Network

(1) 2

X1 21 Z]()
1 2

. 0 e
1 (2)
X3 ZZ(),) Z3
(1) (2)

X, R, “R 2
(0) 0,1) ey (1,2) (2)
9% Wi Wik 7 Wi Wik /4
X Wik Wik Tre Wik - | Wk Zro

Z](n—N Zgn)
_ (n)
2y Y Z9
Z?()n—n - én)
e (n)
Zi«npn ZK(n)
n-1) ®m-1n) (n)
Zl Wl,l Wl,K Zl
ZK Wl,K © WK,K ZK

More compactly as matrix multiplication: Z(k) =g (W(k_l’k)Z(k_l))

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 ‘ 1 — S |
0.8} g((zz)) ' 05 | g((zz)) _ 41 g((zz)v ‘
0.6 | - 31
0
04} 2|
5ol . -05 | . |
0 . , -1 : 0 .
-5 0 5 -5 0 5 -5 0 5
1 e? — e~ %
= = z)=max (0, z
g(z) YL g(z) T oz g(z) (0,z)
1 z>0
’ . . ’ . _ 2 ’ —)
g'(z)= g(z)(1-g(2)) g'(z)=1-g(2) 9 (z) {0, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Multiple outputs (“heads”) possible

Can use learned features for classification (similar to logistic regression):

X1 2 Zq i
RS NS R
X3 e A2 (1 2 20T — P(y|x; w)
1
* P(y = +1l|lx;w) = ——35r
1+e .
2 22, 00 230t * PO =-lnw) =1-—

Deep Neural Network: Training

Training the deep neural network is just like logistic regression:

w

max [l[(w) = max ZlogP(y(i)\az(i);w)

just w tends to be a much, much larger vector &

-> just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

Theorem (Universal Function Approximators). A two-layer
neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

Practical considerations
Can be seen as learning the features

Large number of neurons training

Danger for overfitting

test
held-out

aCcuracy

(hence early stopping!)

iterations

Universal Function Approximation Theorem?®

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure yu, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [g« |f(z)[Pdp(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem?®

Math. Control Signals Systems (1989) 2: 303-314 Mathemaﬁcs Of Control
i

Signals, and Systems

© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we d that finite linear inations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
'Zx aa(y]x + 6)), (1)
£

where y; € R" and a;, 6 € R are fixed. (yT is the transpose of y so that yTx is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

. 1 as t— +oo,
o) 0 as t—» —oo.

Such_functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if o is any continuous sigmoidal

* Date received: October 21, 1988, Date revised: February 17, 1989. This research was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-
85ER25001.

1 Center for Research and Devel and D of El
Engineering, University of Illinois, Urbana, Illinois 61801, U.S.A.

and Computer

303

ISU3-60891 S3.00 + 00
Copyright 1991 Pergamon Press ple

Neural Networks. Vol. 4. pp.
Priated in the USA. All rights r

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KuUrT HORNIK
Technische Universitiit Wien, Vienna, Austria
(Received 30 January 1990: revised and accepied 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect o L') per-
formance criteria, for arbitrary finite input environment measures i, provided only that sufficiently many hidden
units are available. If the activation function is continuous. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and

its derivatives.

Keywords—Multilayer feedforward networks, Activation function, Universal approximation capabilities. Input

environment measure, L/(x) approximation, Uniform

1. INTRODUCTION

The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989), Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Irie and Miyake (1988),
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

If we think of the network architecture as a rule
for computing values at / output units given values
at k input units, hence implementing a class of map-
pings from R to R', we can ask how well arbitrary
mappings from R* to R’ can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem to be dealt with. In many applications,
it is necessary to have the network perform simul-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut
fr Statistik und Wahrscheinlichkeitstheorie, Technische Uni-
versitat Wien, Wiedner HauptstraBe 8-10/107. A-1040 Wien. Aus
na

pp Sobolev spaces, Smooth approximation.
measured by the uniform distance between functions
on X. that is,

paalf. 8) = sup [f(x) = 2(x)|
3

In other applications, we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure u, where g(R*) < =,
In this case, closeness is measured by the L#(x) dis-
tances

m_H.n)’“ f(x) — g dulx) | .
Jx

I = p < =, the most popular choice being p = 2,
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications, it is also necessary that the derivatives of
the app: ing function img d by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Hornik et al. (1990), who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series); for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989).

All papers certain approxi ca-

MULTILAYER FEEDFORWARD NETWORKS
‘WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by

Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and

Shimon Schocken
Leonard N. Stern School of Business
New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

‘Working Paper Series

STERN 1S-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”

How about computing all the derivatives?

Derivatives tables: 4 (@y=0 1= 2 [og)= -

dx u dx
d . d | du
—(x)=1 [I()g, u] =log e
dx dx a oy odx
d . du 1 . -
—lau)=a— i‘,“ =" dl
dx dx dx dx
d o du dv dw v .
—(Uut+tv-w)=—+——— ia":a"lnaﬂ
dx de dx dx dx dx
d . dv du d ;. S du dv
E(””:”E-H‘E T(u‘)=m‘ lT«t-lnu u‘i—
4 v . ax ! ax ax
d (u) ldu u dv d . du
—| = |l=————— —sinu = cosu—
dx\ v vde vodx dx dx
({ 1 n—1 ([” ([. . ({“
I_(“)= nu 1— I—cosu = —smu{—
dx dx dx dx
d . 1 du d > du
——(u)=_— T Ttanu = SeC uT
X 2-/u dx dx dx
g ; d s du
i(l)z_é‘ﬂ ! cotu =—csc u .
dx\u " dx ax ax
: v d du
d(1)__ n du secu = secutanu—
(l’\' “n u.le (I\' ([X ([.\‘
. _ d du
i[ﬂ g_dr.)]ﬂ cscH = —cscucotu
dx ™ "“)]_ (/u['/(“' dx dx ax

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

But neural net f is never one of those?
=« No problem: CHAIN RULE:

L f(x) = g(h(z))

Then f'(x) =g (h(x))h (z)

Derivatives can be computed by following well-defined procedures

Automatic Differentiation

Automatic differentiation software
e.g. TensorFlow, PyTorch, Jax
Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w

This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

Need to know this exists

How this is done? Details outside of scope of C5188, but we’ll
show a basic example

Example: Automatic Differentiation

Build a computation graph and use chain rule

Example: Automatic Differentiation™

Build a computation graph and use chain rule: f(z) = g(h(z)) f'(z) =g (h(z))H ()
Example: neural network with quadratic loss L(a,,y*) = %(az — y*)? and

ReLU activations g(z) = max(z, 0)
az = g2(wz * g1(wq * X)) L=y a) = 4

002 _ 9 0) = 1 (wh 0 oL
a—Zz—EmaX(ZZ,) =1 (when z, > 0) = —(a, —y*") = —4

Fun Neural Net Demo Site

Demo-site:
http://playground.tensorflow.org/

http://playground.tensorflow.org/

Summary of Key ldeas

Optimize probability of label given input max [l(w) = max Zlogp(y(i)\fﬂ(i);w)

w

Continuous optimization

Gradient ascent:
Compute steepest uphill direction = gradient (= just vector of partial derivatives)
Take step in the gradient direction
Repeat (until held-out data accuracy starts to drop = “early stopping”)

Deep neural nets
Last layer = still logistic regression

Now also many more layers before this last layer
= computing the features
the features are learned rather than hand-designed
Universal function approximation theorem
If neural net is large enough
Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting / memorizing the training data & early stopping!

Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

