
Announcements

§ Project 5 due Tueday, Nov 29 at 11:59pm PT
§ Strike is underway
§ Homework 9 deadline postponed
§ Homework 10 release and deadline postponed
§ Online, emergency-only office hours

§ 6:30-8:00pm Tu/Th (Peyrin & Igor)
§ 5:00-6:30pm M/W (Peyrin)

§ Everyone gets 1 discussion participation credit this week
§ Lectures are online-only for duration of strike

CS 188: Artificial Intelligence

Optimization and Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Multiclass Logistic Regression

§ Recall Multi-Class Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y: zy =

§ Prediction highest score wins

§ How to make the scores into probabilities?

softmax 𝑧", . . . , 𝑧# $ =
e%!

∑& 𝑒
%"

𝑃 𝑦 𝑥 ;𝑤) =
𝑒!!

∑"# 𝑒!!"
= softmax 𝑧$, … , 𝑧% "

Reminder: Best w for Multi-Class Logistic Regression

§ Given data pairs x("), 𝑦(") maximize log-likelihood:

§ Use numerical optimization inspired by hill climbing
§ General problem: !𝑤 = argmax

#
𝑔(𝑤)

§ Derivative of the function $%
$&

tells us which direction to step into

4𝑤 = argmax
&

∑' log 𝑃(𝑦 ' |𝑥 ' ; 𝑤)

1-D and 2-D Optimization

Source: offconvex.org

Gradient Ascent

Perform update in uphill direction for each coordinate
The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

E.g., consider:

Updates: ▪ Updates in vector notation:

with: = gradient

Idea:
Start somewhere
Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

▪ ⍺: learning rate --- tweaking parameter that needs to be
chosen carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes about 0.1 – 1 %

Init 𝑤
for iter = 1, 2, …

𝑤 ← 𝑤 + 𝛼 ⋅ ∇𝑔(𝑤)

Choice of learning rate ⍺ is a hyperparameter
Example: ⍺=0.001 (too small)

Learning Rate

Source: https://distill.pub/2017/momentum/

Choice of step size ⍺ is a hyperparameter
Example: ⍺=0.004 (too large)

Learning Rate

Source: https://distill.pub/2017/momentum/

Gradient Ascent with Momentum*

Init 𝑤
for iter = 1, 2, …

𝑧 ← 𝛽 ⋅ 𝑧 + ∇𝑔 𝑤
𝑤 ← 𝑤 + 𝛼 ⋅ 𝑧

▪ Often use momentum to improve gradient ascent convergence

▪ One interpretation: w moves like a particle with mass
▪ Another: exponential moving average on gradient

Init 𝑤
for iter = 1, 2, …

𝑤 ← 𝑤 + 𝛼 ⋅ ∇𝑔(𝑤)

Gradient Ascent: Gradient Ascent with momentum:

Example: ⍺=0.001 and β=0.0

Gradient Ascent with Momentum*

Source: https://distill.pub/2017/momentum/

Example: ⍺=0.001 and β=0.9

Gradient Ascent with Momentum*

Source: https://distill.pub/2017/momentum/

Batch Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …

pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …

pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

Neural Networks

Multi-class Logistic Regression

= special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

𝑤!,!

𝑤#,$

𝑤!,%

𝑧! =%
"

𝑤!," ⋅ 𝑓! 𝑥 = 𝑤! ⋅ 𝑓(𝑥)

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

• Neural network with n layers
• 𝑧((): activations at layer k
• 𝑊((*",(): weights taking activations from layer k-1 to layer k

Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

𝑥!
…

𝑥"

𝑊!,! … 𝑊!,#

… … …

𝑊!,# … 𝑊$,#

…
𝑧!
…

𝑧#

𝑊!,! … 𝑊!,#

… … …

𝑊!,# … 𝑊#,#

𝑧!
…

𝑧#

(0, 1) (1, 2)(0) (1) (𝑛)

𝑧!
𝑧$
𝑧%

(𝑂𝑈𝑇)

More compactly as matrix multiplication: 𝑧(') = 𝑔(𝑊 '(),' 𝑧('()))

𝑧!
…

𝑧#

(2)

𝑧!
…

𝑧#

𝑊!,! … 𝑊!,#

… … …

𝑊!,# … 𝑊#,#

(𝑛 − 1, 𝑛)(𝑛 − 1)

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Multiple outputs (“heads”) possible

…

x1

x2

x3

xL

… … … …

…
𝑧,-.

• 𝑃 𝑦 = +1 𝑥;𝑤 = "

"/0#$%&'

• 𝑃 𝑦 = −1 𝑥;𝑤 = 1 − "
"/0#$%&'

𝑃 𝑦 𝑥;𝑤

Can use learned features for classification (similar to logistic regression):

Deep Neural Network: Training

Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

-> just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

Theorem (Universal Function Approximators). A two-layer
neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

Practical considerations
Can be seen as learning the features

Large number of neurons
Danger for overfitting
(hence early stopping!)

Universal Function Approximation Theorem*

In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?
■ No problem: CHAIN RULE:

If

Then

Derivatives can be computed by following well-defined procedures

Automatic differentiation software
e.g. TensorFlow, PyTorch, Jax
Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w
This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”
Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

Need to know this exists
How this is done? Details outside of scope of CS188, but we’ll
show a basic example

Automatic Differentiation

Example: Automatic Differentiation

2

+

3

*

4

fg

x

y

z

■ Build a computation graph and use chain rule

Example: Automatic Differentiation*

■ Build a computation graph and use chain rule:
■ Example: neural network with quadratic loss 𝐿 𝑎8, 𝑦∗ = :

8 𝑎8 − 𝑦∗ 8 and
ReLU activations 𝑔 𝑧 = max(𝑧, 0)

■ 𝑎8 = 𝑔8 𝑤8 ∗ 𝑔:(𝑤: ∗ 𝑥)

2

1

2 2

3

6 6

2

8

𝜕𝐿
𝜕𝑦∗ = −(𝑎2 − 𝑦∗) = −4

𝜕𝐿
𝜕𝑎2

= 𝑎2 − 𝑦∗ = 4

𝜕𝐿
𝜕𝑧2

=
𝜕𝐿
𝜕𝑎2

𝜕𝑎2
𝜕𝑧2

= 4 ⋅ 1

𝜕𝐿
𝜕𝑤2

=
𝜕𝐿
𝜕𝑧2

𝜕𝑧2
𝜕𝑤2

= 4 ⋅ 𝑎" = 8

𝜕𝑧2
𝜕𝑤2

=
𝜕
𝑤 (𝑤2 ⋅ 𝑎") = 𝑎"

𝜕𝑎2
𝜕𝑧2

=
𝜕
𝑧 max(𝑧2, 0) = 1 (𝑤ℎ𝑒𝑛 𝑧2 > 0)

𝐿

Fun Neural Net Demo Site

Demo-site:
http://playground.tensorflow.org/

http://playground.tensorflow.org/

Summary of Key Ideas
Optimize probability of label given input

Continuous optimization
Gradient ascent:

Compute steepest uphill direction = gradient (= just vector of partial derivatives)
Take step in the gradient direction
Repeat (until held-out data accuracy starts to drop = “early stopping”)

Deep neural nets
Last layer = still logistic regression
Now also many more layers before this last layer

= computing the features
the features are learned rather than hand-designed

Universal function approximation theorem
If neural net is large enough
Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting / memorizing the training data � early stopping!

Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

