
CS 188: Artificial Intelligence

Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recall: Deep Neural Network
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g = nonlinear activation function

• Neural network with n layers
• 𝑧("): activations at layer k
• 𝑊("$%,"): weights taking activations from layer k-1 to layer k



Recall: Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Recall: Deep Neural Network
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Recall: Deep Neural Network Training

Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

-> just run gradient ascent 
+ stop when log likelihood of hold-out data starts to decrease



Batch Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …



Recall: How about computing all the derivatives?

■ But neural net f is never one of those?
■ No problem: CHAIN RULE:

If 

Then

Derivatives can be computed by following well-defined procedures



Example: Automatic Differentiation*

■ Build a computation graph and use chain rule:
■ Example: neural network with quadratic loss 𝐿 𝑎#, 𝑦∗ = %

# 𝑎# − 𝑦∗ # and 
ReLU activations 𝑔 𝑧 = max(𝑧, 0)

■ 𝑎# = 𝑔# 𝑤# ∗ 𝑔%(𝑤% ∗ 𝑥)
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Preventing Overfitting in Neural Networks

Early stopping:

Weight regularization



Weight Regularization

What can go wrong when we maximize log-likelihood?
Example: logistic regression

• 𝑃 𝑦 = +1 𝑥;𝑤 = %
%?@$%⋅'())

• 𝑃 𝑦 = −1 𝑥;𝑤 = 1 − %
%?@$%⋅'())

𝑤 ⋅ 𝑓(𝑥)

𝑃 𝑦 = +1 𝑥;𝑤
𝑤 can grow very large and lead to 
overfitting and learning instability



Weight Regularization

What can go wrong when we maximize log-likelihood?

𝑤 can grow very large

Solution: add an objective term to penalize weight magnitude

max'+
(

log 𝑃(𝑦 ( |𝑥 ( ; 𝑤) −
𝜆
2
+
)

𝑤)*

𝜆 is a hyperparameter (typically 0.1 to 0.0001 or smaller)



Preventing Overfitting in Neural Networks

Early stopping:

Weight regularization: max' ∑( log 𝑃(𝑦 ( |𝑥 ( ; 𝑤) − +
*
∑)𝑤)*

Dropout



Dropout*

At each training step, with 
probability (1-p) set an 
activation to zero (drop it)

After training, don’t drop, but 
multiply weights by p

“Damage” the network during training to encourage redundancy

Srivastava et al, 2014



Preventing Overfitting in Neural Networks

Early stopping:

Weight regularization: max' ∑( log 𝑃(𝑦 ( |𝑥 ( ; 𝑤) − +
*
∑)𝑤)*

Dropout:



Consistency vs. Simplicity

§ Example: curve fitting (regression, function approximation)

§ Consistency vs. simplicity
§ Ockham’s razor



Consistency vs. Simplicity

§ Fundamental tradeoff: bias vs. variance

§ Usually algorithms prefer consistency by default (why?)

§ Several ways to operationalize “simplicity”
§ Reduce the hypothesis/model space

§ Assume more: e.g. independence assumptions, as in naïve Bayes
§ Fewer features or neurons
§ Other limits on model structure

§ Regularization
§ Laplace Smoothing: cautious use of small counts
§ Small weight vectors in neural networks (stay close to zero-mean prior)
§ Hypothesis space stays big, but harder to get to the outskirts



Fun Neural Net Demo Site

Demo-site:
http://playground.tensorflow.org/

http://playground.tensorflow.org/


Summary of Key Ideas
Optimize probability of label given input

Continuous optimization
Gradient ascent:

Compute steepest uphill direction = gradient (= just vector of partial derivatives)
Take step in the gradient direction
Repeat (until held-out data accuracy starts to drop = “early stopping”)

Deep neural nets
Last layer = still logistic regression
Now also many more layers before this last layer

= computing the features
the features are learned rather than hand-designed

Universal function approximation theorem
If neural net is large enough 
Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting  / memorizing the training data ? early stopping!

Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



How well does deep learning work?



Computer Vision



Object Detection



Manual Feature Design



Features and Generalization

[HoG: Dalal and Triggs, 2005]



Features and Generalization

Image HoG



Performance

graph credit Matt 
Zeiler, Clarifai
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Papers With Code: ImageNet



MS COCO Image Captioning Challenge

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more 



Visual QA Challenge
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh 



Visual Dialogue
Alayrac et al, 2022



Image Segmentation



Speech Recognition

graph credit Matt Zeiler, Clarifai



Machine Translation
Google Neural Machine Translation (in production)





Traditional Programming:
program by writing lines of code

Change in Programming Paradigm?

Poor performance on AI problems

?

Deep Learning (“Software 2.0”):
program by providing data

?

Success!


