
CS 188 Introduction to Artificial Intelligence
Fall 2022 Note 5
These lecture notes are heavily based on notes originally written by Nikhil Sharma.

Last updated: September 14, 2022

Games
In the first note, we talked about search problems and how to solve them efficiently and optimally - using
powerful generalized search algorithms, our agents could determine the best possible plan and then simply
execute it to arrive at a goal. Now, let’s shift gears and consider scenarios where our agents have one or
more adversaries who attempt to keep them from reaching their goal(s). Our agents can no longer run the
search algorithms we’ve already learned to formulate a plan as we typically don’t deterministically know
how our adversaries will plan against us and respond to our actions. Instead, we’ll need to run a new class
of algorithms that yield solutions to adversarial search problems, more commonly known as games.

There are many different types of games. Games can have actions with either deterministic or stochastic
(probabilistic) outcomes, can have any variable number of players, and may or may not be zero-sum. The
first class of games we’ll cover are deterministic zero-sum games, games where actions are deterministic
and our gain is directly equivalent to our opponent’s loss and vice versa. The easiest way to think about
such games is as being defined by a single variable value, which one team or agent tries to maximize and
the opposing team or agent tries to minimize, effectively putting them in direct competition. In Pacman, this
variable is your score, which you try to maximize by eating pellets quickly and efficiently while ghosts try
to minimize by eating you first. Many common household games also fall under this class of games:

• Checkers - The first checkers computer player was created in 1950. Since then, checkers has become a
solved game, which means that any position can be evaluated as a win, loss, or draw deterministically
for either side given both players act optimally.

• Chess - In 1997, Deep Blue became the first computer agent to defeat human chess champion Gary
Kasparov in a six-game match. Deep Blue was constructed to use extremely sophisticated methods to
evaluate over 200 million positions per second. Current programs are even better, though less historic.

• Go - The search space for Go is much larger than for chess, and so most didn’t believe Go computer
agents would ever defeat human world champions for several years to come. However, AlphaGo,
developed by Google, historically defeated Go champion Lee Sodol 4 games to 1 in March 2016.

CS 188, Fall 2022, Note 5 1



All of the world champion agents above use, at least to some degree, the adversarial search techniques that
we’re about to cover. As opposed to normal search, which returned a comprehensive plan, adversarial search
returns a strategy, or policy, which simply recommends the best possible move given some configuration of
our agent(s) and their adversaries. We’ll soon see that such algorithms have the beautiful property of giving
rise to behavior through computation - the computation we run is relatively simple in concept and widely
generalizable, yet innately generates cooperation between agents on the same team as well as "outthinking"
of adversarial agents.

The standard game formulation consists of the following definitions:

• Initial state, s0

• Players, Players(s) denote whose turn is

• Actions, Actions(s) available actions for the player

• Transition model Result(s,a)

• Terminal test, Terminal − test(s)

• Terminal values, Utility(s, player)

Minimax
The first zero-sum-game algorithm we will consider is minimax, which runs under the motivating assump-
tion that the opponent we face behaves optimally, and will always perform the move that is worst for us. To
introduce this algorithm, we must first formalize the notion of terminal utilities and state value. The value
of a state is the optimal score attainable by the agent which controls that state. In order to get a sense of
what this means, observe the following trivially simple Pacman game board:

Assume that Pacman starts with 10 points and loses 1 point per move until he eats the pellet, at which point
the game arrives at a terminal state and ends. We can start building a game tree for this board as follows,
where children of a state are successor states just as in search trees for normal search problems:

CS 188, Fall 2022, Note 5 2



It’s evident from this tree that if Pacman goes straight to the pellet, he ends the game with a score of 8 points,
whereas if he backtracks at any point, he ends up with some lower valued score. Now that we’ve generated
a game tree with several terminal and intermediary states, we’re ready to formalize the meaning of the value
of any of these states.

A state’s value is defined as the best possible outcome (utility) an agent can achieve from that state. We’ll
formalize the concept of utility more concretely later, but for now it’s enough to simply think of an agent’s
utility as its score or number of points it attains. The value of a terminal state, called a terminal utility, is
always some deterministic known value and an inherent game property. In our Pacman example, the value
of the rightmost terminal state is simply 8, the score Pacman gets by going straight to the pellet. Also, in this
example, the value of a non-terminal state is defined as the maximum of the values of its children. Defining
V (s) as the function defining the value of a state s, we can summarize the above discussion:

∀non-terminal states, V (s) = max
s′∈successors(s)

V (s′)

∀ terminal states, V (s) = known

This sets up a very simple recursive rule, from which it should make sense that the value of the root node’s
direct right child will be 8, and the root node’s direct left child will be 6, since these are the maximum
possible scores the agent can obtain if it moves right or left, respectively, from the start state. It follows that
by running such computation, an agent can determine that it’s optimal to move right, since the right child
has a greater value than the left child of the start state.

Let’s now introduce a new game board with an adversarial ghost that wants to keep Pacman from eating the
pellet.

The rules of the game dictate that the two agents take turns making moves, leading to a game tree where
the two agents switch off on layers of the tree that they "control". An agent having control over a node
simply means that node corresponds to a state where it is that agent’s turn, and so it’s their opportunity to
decide upon an action and change the game state accordingly. Here’s the game tree that arises from the new
two-agent game board above:

CS 188, Fall 2022, Note 5 3



Blue nodes correspond to nodes that Pacman controls and can decide what action to take, while red nodes
correspond to ghost-controlled nodes. Note that all children of ghost-controlled nodes are nodes where the
ghost has moved either left or right from its state in the parent, and vice versa for Pacman-controlled nodes.
For simplicity purposes, let’s truncate this game tree to a depth-2 tree, and assign spoofed values to terminal
states as follows:

Naturally, adding ghost-controlled nodes changes the move Pacman believes to be optimal, and the new
optimal move is determined with the minimax algorithm. Instead of maximizing the utility over children
at every level of the tree, the minimax algorithm only maximizes over the children of nodes controlled by
Pacman, while minimizing over the children of nodes controlled by ghosts. Hence, the two ghost nodes
above have values of min(−8,−5) =−8 and min(−10,+8) =−10 respectively. Correspondingly, the root
node controlled by Pacman has a value of max(−8,−10) =−8. Since Pacman wants to maximize his score,
he’ll go left and take the score of −8 rather than trying to go for the pellet and scoring −10. This is a prime
example of the rise of behavior through computation - though Pacman wants the score of +8 he can get if he
ends up in the rightmost child state, through minimax he "knows" that an optimally-performing ghost will
not allow him to have it. In order to act optimally, Pacman is forced to hedge his bets and counterintuitively
move away from the pellet to minimize the magnitude of his defeat. We can summarize the way minimax
assigns values to states as follows:

∀ agent-controlled states, V (s) = max
s′∈successors(s)

V (s′)

∀opponent-controlled states, V (s) = min
s′∈successors(s)

V (s′)

∀ terminal states, V (s) = known

CS 188, Fall 2022, Note 5 4



In implementation, minimax behaves similarly to depth-first search, computing values of nodes in the same
order as DFS would, starting with the the leftmost terminal node and iteratively working its way rightwards.
More precisely, it performs a postorder traversal of the game tree. The resulting pseudocode for minimax
is both elegant and intuitively simple, and is presented below. Note that minimax will return an action,
which corresponds to the root node’s branch to the child it has taken its value from.

Alpha-Beta Pruning
Minimax seems just about perfect - it’s simple, it’s optimal, and it’s intuitive. Yet, its execution is very
similar to depth-first search and it’s time complexity is identical, a dismal O(bm). Recalling that b is the
branching factor and m is the approximate tree depth at which terminal nodes can be found, this yields
far too great a runtime for many games. For example, chess has a branching factor b ≈ 35 and tree depth
m ≈ 100. To help mitigate this issue, minimax has an optimization - alpha-beta pruning.

Conceptually, alpha-beta pruning is this: if you’re trying to determine the value of a node n by looking at its
successors, stop looking as soon as you know that n’s value can at best equal the optimal value of n’s parent.
Let’s unravel what this tricky statement means with an example. Consider the following game tree, with
square nodes corresponding to terminal states, downward-pointing triangles corresponding to minimizing
nodes, and upward-pointing triangles corresponding to maximizer nodes:

Let’s walk through how minimax derived this tree - it began by iterating through the nodes with val-
ues 3, 12, and 8, and assigning the value min(3,12,8) = 3 to the leftmost minimizer. Then, it assigned
min(2,4,6) = 2 to the middle minimizer, and min(14,5,2) = 2 to the rightmost minimizer, before finally as-
signing max(3,2,2) = 3 to the maximizer at the root. However, if we think about this situation, we can come
to the realization that as soon as we visit the child of the middle minimizer with value 2, we no longer need
to look at the middle minimizer’s other children. Why? Since we’ve seen a child of the middle minimizer

CS 188, Fall 2022, Note 5 5



with value 2, we know that no matter what values the other children hold, the value of the middle minimizer
can be at most 2. Now that this has been established, let’s think one step further still - the maximizer at
the root is deciding between the value of 3 of the left minimizer, and the value that’s ≤ 2, it’s guaranteed to
prefer the 3 returned by the left minimizer over the value returned by the middle minimizer, regardless of
the values of its remaining children. This is precisely why we can prune the search tree, never looking at
the remaining children of the middle minimizer:

Implementing such pruning can reduce our runtime to as good as O(bm/2), effectively doubling our "solv-
able" depth. In practice, it’s often a lot less, but generally can make it feasible to search down to at least
one or two more levels. This is still quite significant, as the player who thinks 3 moves ahead is favored to
win over the player who thinks 2 moves ahead. This pruning is exactly what the minimax algorithm with
alpha-beta pruning does, and is implemented as follows:

Take some time to compare this with the pseudocode for vanilla minimax, and note that we can now return
early without searching through every successor.

Evaluation Functions
Though alpha-beta pruning can help increase the depth for which we can feasibly run minimax, this still
usually isn’t even close to good enough to get to the bottom of search trees for a large majority of games.
As a result, we turn to evaluation functions, functions that take in a state and output an estimate of the
true minimax value of that node. Typically, this is plainly interpreted as "better" states being assigned
higher values by a good evaluation function than "worse" states. Evaluation functions are widely employed
in depth-limited minimax, where we treat non-terminal nodes located at our maximum solvable depth
as terminal nodes, giving them mock terminal utilities as determined by a carefully selected evaluation

CS 188, Fall 2022, Note 5 6



function. Because evaluation functions can only yield estimates of the values of non-terminal utilities, this
removes the guarantee of optimal play when running minimax.

A lot of thought and experimentation is typically put into the selection of an evaluation function when
designing an agent that runs minimax, and the better the evaluation function is, the closer the agent will come
to behaving optimally. Additionally, going deeper into the tree before using an evaluation function also tends
to give us better results - burying their computation deeper in the game tree mitigates the compromising
of optimality. These functions serve a very similar purpose in games as heuristics do in standard search
problems.

The most common design for an evaluation function is a linear combination of features.

Eval(s) = w1 f1(s)+w2 f2(s)+ ...+wn fn(s)

Each fi(s) corresponds to a feature extracted from the input state s, and each feature is assigned a corre-
sponding weight wi. Features are simply some element of a game state that we can extract and assign a
numerical value. For example, in a game of checkers we might construct an evaluation function with 4 fea-
tures: number of agent pawns, number of agent kings, number of opponent pawns, and number of opponent
kings. We’d then select appropriate weights based loosely on their importance. In our checkers example, it
makes most sense to select positive weights for our agent’s pawns/kings and negative weights for our oppo-
nents pawns/kings. Furthermore, we might decide that since kings are more valuable pieces in checkers than
pawns, the features corresponding to our agent’s/opponent’s kings deserve weights with greater magnitude
than the features concerning pawns. Below is a possible evaluation function that conforms to the features
and weights we’ve just brainstormed:

Eval(s) = 2 ·agent_kings(s)+agent_pawns(s)−2 ·opponent_kings(s)−opponent_pawns(s)

As you can tell, evaluation function design can be quite free-form, and don’t necessarily have to be linear
functions either. For example nonlinear evaluation functions based on neural networks are very common
in Reinforcement Learning applications. The most important thing to keep in mind is that the evaluation
function yields higher scores for better positions as frequently as possible. This may require a lot of fine-
tuning and experimenting on the performance of agents using evaluation functions with a multitude of
different features and weights.

CS 188, Fall 2022, Note 5 7


