
CS 188 Introduction to Artificial Intelligence
Fall 2022 Note 15
These lecture notes are based on notes originally written by Josh Hug and Jacky Liang. They have been
heavily updated by Regina Wang.

Last updated: October 5, 2022

Approximate Inference in Bayes Nets: Sampling
An alternate approach for probabilistic reasoning is to implicitly calculate the probabilities for our query
by simply counting samples. This will not yield the exact solution, as in IBE or Variable Elimination, but
this approximate inference is often good enough, especially when taking into account massive savings in
computation.

For example, suppose we wanted to calculate P(+t|+ e). If we had a magic machine that could generate
samples from our distribution, we could collect all samples for which E =+e, and then compute the fraction
of those samples for while T =+t. We’d easily be able to compute any inference we’d want just by looking
at the samples. Let’s see some different methods for generating samples.

Prior Sampling
Given a Bayes Net model, we can easily write a simulator. For example, consider the CPTs given below for
the simplified model with only two variables T and C.

A simple simulator in Python would be written as follows:

import random

CS 188, Fall 2022, Note 15 1



def get_t():
if random.random() < 0.99:

return True
return False

def get_c(t):
if t and random.random() < 0.95:

return True
return False

def get_sample():
t = get_t()
c = get_c(t)
return [t, c]

We call this simple approach prior sampling. The downside of this approach is that it may require the
generation of a very large number of samples in order to perform analysis of unlikely scenarios. If we
wanted to compute P(C|− t), we’d have to throw away 99% of our samples.

Rejection Sampling
One way to mitigate the previously stated problem is to modify our procedure to early reject any sample
inconsistent with our evidence. For example, for the query P(C|− t), we’d avoid generating a value for C
unless t is false. This still means we have to throw away most of our samples, but at least the bad samples
we generate take less time to create. We call this approach rejection sampling.

These two approaches work for the same reason: any valid sample occurs with the same probability as
specified in the joint PDF.

Likelihood Weighting
A more exotic approach is likelihood weighting, which ensures that we never generate a bad sample. In
this approach, we manually set all variables equal to the evidence in our query. For example, if we wanted
to compute P(C|− t), we’d simply declare that t is false. The problem here is that this may yield samples
that are inconsistent with the correct distribution.

If we simply force some variables to be equal to the evidence, then our samples occur with probability
only equal to the products of the CPTs of the non-evidence variables. This means the joint PDF has no
guarantee of being correct (though may be for some cases like our two variable Bayes Net). Instead, if we
have sampled variables Z1 through Zp and fixed evidence variables E1 through Em a sample is given by the
probability P(Z1...Zp,E1...Em) = ∏

p
i P(Zi|Parents(Zi)). What is missing is that the probability of a sample

does not include all the probabilities of P(Ei|Parents(Ei)), i.e. not every CPT participates.

Likelihood weighting solves this issue by using a weight for each sample, which is the probability of the
evidence variables given the sampled variables. That is, instead of counting all samples equally, we can
define a weight w j for sample j that reflects how likely the observed values for the evidence variables are,
given the sampled values. In this way, we ensure that every CPT participates. To do this, we iterate through
each variable in the Bayes net, as we do for normal sampling), sampling a value if the variable is not an
evidence variable, or changing the weight for the sample if the variable is evidence.

CS 188, Fall 2022, Note 15 2



For example, suppose we want to calculate P(T |+ c,+e). For the jth sample, we’d perform the following
algorithm:

• Set w j to 1.0, and c = true and e = true.

• For T : This is not an evidence variable, so we sample t j from P(T ).

• For C: This is an evidence variable, so we multiply the weight of the sample by P(+c|t j), i.e. w j =
w j ·P(+c|t j).

• For S: sample s j from P(S|t j).

• For E: multiply the weight of the sample by P(+e|+ c,s j), i.e. w j = w j ·P(+e|+ c,s j).

Then when we perform the usual counting process, we weight sample j by w j instead of 1, where 0 <=
w j <= 1. This approach works because in the final calculations for the probabilities, the weights effec-
tively serve to replace the missing CPTs. In effect, we ensure that the weighted probability of each sample
is given by P(z1...zp,e1...em) =

[
∏

p
i P(zi|Parents(zi))

]
· [∏m

i P(ei|Parents(ei))]. The pseudocode for Likeli-
hood Weigting is provided below.

For all three of our sampling methods (prior sampling, rejection sampling, and likelihod weighting), we
can get increasing amounts of accuracy by generating additional samples. However, of the three, likelihood
weighting is the most computationally efficient, for reasons beyond the scope of this course.

CS 188, Fall 2022, Note 15 3



Gibbs Sampling
Gibbs Sampling is a fourth approach for sampling. In this approach, we first set all variables to some totally
random value (not taking into account any CPTs). We then repeatedly pick one variable at a time, clear its
value, and resample it given the values currently assigned to all other variables.

For the T,C,S,E example above, we might assign t = true, c = true, s = false, and e = true. We then pick
one of our four variables to resample, say S, and clear it. We then pick a new variable from the distribution
P(S|+ t,+c,+e). This requires us knowing this conditional distribution. It turns out that we can easily
compute the distribution of any single variable given all other variables. More specifically, P(S|T,C,E) can
be calculated only using the CPTs that connect S with its neighbors. Thus, in a typical Bayes Net, where
most variables have only a small number of neighbors, we can precompute the conditional distributions for
each variable given all of its neighbors in linear time.

We will not prove this, but if we repeat this process enough times, our later samples will eventually converge
to the correct distribution even though we may start from a low-probability assignment of values. If you’re
curious, there are some caveats beyond the scope of the course that you can read about under the Failure
Modes section of the Wikipedia article for Gibbs Sampling.

The pseudocode for Gibbs Sampling is provided below.

Conclusion
To summarize, Bayes’ Nets is a powerful representation of joint probability distributions. Its topological
structure encodes independence and conditional independence relationships, and we can use it to model
arbitrary distributions to perform inference and sampling.

In this note, we covered two approaches to probabilistic inference: exact inference and probabilistic in-
ference (sampling). In exact inference, we are guaranteed the exact correct probability, but the amount of
computation may be prohibitive.

The exact inference algorithms covered were:

• Inference By Enumeration

• Variable Elimination

CS 188, Fall 2022, Note 15 4



We can turn to sampling to approximate solutions while using less compute.

The sampling algorithms covered were:

• Prior Sampling

• Rejection Sampling

• Likelihood Weighting

• Gibbs Sampling

CS 188, Fall 2022, Note 15 5


