
CS 188
Spring 2023 Final Review: HMMs & VPI Solutions
Q1. Vehicle Perception Indication
A vehicle is trying to identify the situation of the world around it using a set of sensors located around the
vehicle.

Each sensor reading (SRead) is based off of an object’s location (LOC) and an object’s movement (MOVE).
The sensor reading will then produce various values for its predicted location (SLoc) and predicted movement
(SMove). The user will receive these readings, as well as the the image (IMAGE) as feedback.

(a) The vehicle takes an action, and we assign some utility to the action based on the object’s location and
movement. Possible actions are MOVE TOWARDS, MOVE AWAY, and STOP. Suppose the decision
network faced by the vehicle is the following.

(i) Based on the diagram above, which of the following could possibly be true?

■ VPI (Image) = 0

□ VPI (SRead) < 0

□ VPI (SMove,SRead) > VPI (SRead)

■ VPI (Feedback) = 0

# None of the above

VPI(Image) = 0 because there is not active path connecting Image and U

VPI cannot be negative, so option 2 is not selected.

VPI(SMove, SRead) = VPI(SMove | SRead) + VPI(SRead), therefore we can cancel VPI(SRead)
from both side, and it becomes asking if VPI(SMove | SRead) > 0. And we can see that cannot be
true, because shading in SRead, there is no active path connecting SMove and U.
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There is an active path connecting Feedback and U, therefore VPI(Feedback) ≥ 0. It could still be
0 because active path only gives the possibility of > 0.

(ii) Based on the diagram above, which of the following must necessarily be true?

■ VPI (Image) = 0

□ VPI (SRead) = 0

■ VPI (SMove,SRead) = VPI (SRead)

□ VPI (Feedback) = 0

# None of the above

VPI(Image) = 0 because there is not active path connecting Image and U

VPI(SRead) could be > 0 because SRead-MOVE-U is an active path between SRead and U

VPI(SMove, SRead) = VPI(SMove | SRead) + VPI(SRead), therefore we can cancel VPI(SRead)
from both side, and it becomes asking if VPI(SMove | SRead) == 0. And we can see that must true,
because shading in SRead, there is no active path connecting SMove and U.

VPI(Feedback) could be > 0 because feedback-SLoc-SRead-MOVE-U is an active path
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Let’s assume that your startup has less money, so we use a simpler sensor network. One possible sensor network
can be represented as follows.

You have distributions of P (LOC), P (MOVE), P (SRead|LOC,MOVE), P (SLoc|SRead) and utility values U(a, l,m).

(b) Complete the equation for determining the expected utility for some ACTION a.

EU(a) =
(

(i) (ii) (iii)
)

U(a, l,m)

(i)  ∑
l P (l) # ∑

sloc P (sloc|l) # ∑
l

∑
sloc P (sloc|l) # 1

(ii)  ∑
m P (m) # ∑

m P (sloc|m) # ∑
l

∑
m

∑
sloc P (sloc|l)P (sloc|m) # 1

(iii) # ∗
∑

l

∑
m

∑
sloc P (sloc|l)P (sloc|m) # +

∑
l

∑
m

∑
sloc P (sloc|l)P (sloc|m)

# +
∑

l

∑
m

∑
sloc P (sloc|l,m)P (l)P (m)  ∗1

EU(a) =
∑

l P (l)
∑

m P (m)U(a, l,m)

We can eliminate SRead and SLoc via marginalization, so they don’t need to be included the expression

(c) Your colleague Bob invented a new sensor to observe values of SLoc.

(i) Suppose that your company had no sensors till this point. Which of the following expression is
equivalent to VPI(SLoc)?

■ VPI(SLoc) = (
∑

sloc P (sloc) MEU(SLoc = sloc))−maxa EU(a)

■ VPI(SLoc) = MEU(SLoc)−MEU(∅)
□ VPI(SLoc) = maxsloc MEU(SLoc = sloc)−MEU(∅)
# None of the above

Option 2 is correct by definition, and option 1 is the expanded version of option 2

(ii) Gaagle, an established company, wants to sell your startup a device that gives you SRead. Given
that you already have Bob’s device (that gives you SLoc), what is the maximum amount of money
you should pay for Gaagle’s device? Suppose you value $1 at 1 utility.

□ VPI(SRead)

■ VPI(SRead)−VPI(SLoc)

□ VPI(SRead, SLoc)

■ VPI(SRead, SLoc)−VPI(SLoc)

# None of the above

Choice 4 is correct by definition
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Choice 2 is true because VPI(SLoc | SRead) = 0, and thus

VPI(SRead) = VPI(SRead) + 0 = VPI(SRead) + VPI(SLoc | SRead) = VPI(SRead, SLoc), which
makes choice 2 the same as choice 4

2 Particle Filtering Apprenticeship

We are observing an agent’s actions in an MDP and are trying to determine which out of a set {π1, . . . , πn}
the agent is following. Let the random variable Π take values in that set and represent the policy that the
agent is acting under. We consider only stochastic policies, so that At is a random variable with a distribution
conditioned on St and Π. As in a typical MDP, St is a random variable with a distribution conditioned on St−1

and At−1. The full Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting).
Unfortunately, however, we, the observer, cannot see the states St. Thus we are forced to use an adapted
particle filtering algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate
P (Π | a1:t).

(a) The Bayes net for part (a) is

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

(i) Select all of the following that are guaranteed
to be true in this model for t > 3:

□ St ⊥⊥ St−2 | St−1

■ St ⊥⊥ St−2 | St−1, A1:t−1

□ St ⊥⊥ St−2 | Π

□ St ⊥⊥ St−2 | Π, A1:t−1

■ St ⊥⊥ St−2 | Π, St−1

■ St ⊥⊥ St−2 | Π, St−1, A1:t−1

□ None of the above

We will compute our estimate for P (Π | a1:t) by coming up with a recursive algorithm for computing
P (Π, St | a1:t). (We can then sum out St to get the desired distribution; in this problem we ignore that
step.)

(ii) Write a recursive expression for P (Π, St | a1:t) in terms of the CPTs in the Bayes net above.

P (Π, St | a1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1)P (at | St,Π)P (St | st−1, at−1)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state
st and a potential policy πi.

(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill
in the boxes with the correct values so that the algorithm will approximate P (Π, St | a1:t).
1. Elapse time: for each particle (st, πi), sample a successor st+1 from P (St+1 | st, at).

The policy π′ in the new particle is πi .

2. Incorporate evidence: To each new particle (st+1, π
′), assign weight P (at+1 | st+1, π

′).

3. Resample particles from the weighted particle distribution.
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(b) We now observe the acting agent’s actions and rewards at each time step (but we still don’t know the
states). Unlike the MDPs in lecture, here we use a stochastic reward function, so that Rt is a random
variable with a distribution conditioned on St and At. The new Bayes net is given by

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

Notice that the observed rewards do in fact give use-
ful information since d-separation does not give that
Rt ⊥⊥ Π | A1:t.

(i) Give an active path connecting Rt and Π when
A1:t are observed. Your answer should be an
ordered list of nodes in the graph, for example
“St, St+1, At,Π, At−1, Rt−1”.

Rt, St, At,Π. This list reversed is also correct,
and many other similar (though more complicated)
paths are also correct.

(ii) Write a recursive expression for P (Π, St | a1:t, r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St | a1:t, r1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1, r1:t−1)P (at | St,Π)P (St | st−1, at−1)P (rt | at, St)

(c) We now observe only the sequence of rewards and
no longer observe the sequence of actions. The new
Bayes net is shown on the right.

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

(i) Write a recursive expression for P (Π, St, At | r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St, At | r1:t) ∝
∑
st−1

∑
at−1

P (Π, st−1, at−1 | r1:t−1)P (At | St,Π)P (St | st−1, at−1)P (rt | St, At)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state
st, a single action at, and a potential policy πi.

(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill
in the boxes with the correct values so that the algorithm will approximate P (Π, St, At | r1:t).
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1. Elapse time: for each particle (st, at, πi), sample a successor state st+1 from P (St+1 | st, at).

Then, sample a successor action at+1 from P (At+1 | st+1, πi).

The policy π′ in the new particle is πi.

2. Incorporate evidence: To each new particle (st+1, at+1, π
′), assign weight P (rt+1 | st+1, at+1).

3. Resample particles from the weighted particle distribution.
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