Q1. Vehicle Perception Indication

A vehicle is trying to identify the situation of the world around it using a set of sensors located around the vehicle.

Each sensor reading (SRead) is based off of an object's location (LOC) and an object's movement (MOVE). The sensor reading will then produce various values for its predicted location (SLoc) and predicted movement (SMove). The user will receive these readings, as well as the the image (IMAGE) as feedback.
(a) The vehicle takes an action, and we assign some utility to the action based on the object's location and movement. Possible actions are MOVE TOWARDS, MOVE AWAY, and STOP. Suppose the decision network faced by the vehicle is the following.

(i) Based on the diagram above, which of the following could possibly be true?VPI $($ Image $)=0$
VPI (SRead) < 0
VPI (SMove, SRead) > VPI (SRead)
VPI $($ Feedback $)=0$
\bigcirc None of the above
$\operatorname{VPI}($ Image $)=0$ because there is not active path connecting Image and U
VPI cannot be negative, so option 2 is not selected.
$\operatorname{VPI}($ SMove, $\operatorname{SRead})=\operatorname{VPI}($ SMove \mid SRead $)+\operatorname{VPI}($ SRead $)$, therefore we can cancel VPI(SRead) from both side, and it becomes asking if VPI(SMove \mid SRead) >0. And we can see that cannot be true, because shading in SRead, there is no active path connecting SMove and U.

There is an active path connecting Feedback and U, therefore VPI(Feedback) ≥ 0. It could still be 0 because active path only gives the possibility of >0.
(ii) Based on the diagram above, which of the following must necessarily be true?
$\square \operatorname{VPI}($ Image $)=0$
$\square \operatorname{VPI}($ SRead $)=0$
VPI $($ SMove, SRead $)=$ VPI $($ SRead $)$VPI $($ Feedback $)=0$None of the above
$\operatorname{VPI}($ Image $)=0$ because there is not active path connecting Image and U
$\mathrm{VPI}(\mathrm{SRead})$ could be >0 because SRead-MOVE-U is an active path between SRead and U
$\operatorname{VPI}(S M o v e, S R e a d)=\operatorname{VPI}(S M o v e \mid S R e a d)+\operatorname{VPI}(S R e a d)$, therefore we can cancel VPI(SRead) from both side, and it becomes asking if $\operatorname{VPI}($ SMove $\mid \operatorname{SRead})==0$. And we can see that must true, because shading in SRead, there is no active path connecting SMove and U.
$\operatorname{VPI}($ Feedback $)$ could be >0 because feedback-SLoc-SRead-MOVE-U is an active path

Let's assume that your startup has less money, so we use a simpler sensor network. One possible sensor network can be represented as follows.

You have distributions of $P(\mathrm{LOC}), P(\mathrm{MOVE}), P(S R e a d \mid \mathrm{LOC}, \mathrm{MOVE}), P(S L o c \mid S R e a d)$ and utility values $U(a, l, m)$.
(b) Complete the equation for determining the expected utility for some ACTION a.

We can eliminate SRead and SLoc via marginalization, so they don't need to be included the expression
(c) Your colleague Bob invented a new sensor to observe values of SLoc.
(i) Suppose that your company had no sensors till this point. Which of the following expression is equivalent to $\operatorname{VPI}(S L o c)$?
$\square \operatorname{VPI}(S L o c)=\left(\sum_{s l o c} P(s l o c) \operatorname{MEU}(S L o c=s l o c)\right)-\max _{a} \mathrm{EU}(a)$
$\operatorname{VPI}(S L o c)=\operatorname{MEU}(S L o c)-\operatorname{MEU}(\emptyset)$$\operatorname{VPI}(S L o c)=\max _{s l o c} \operatorname{MEU}(S L o c=s l o c)-\operatorname{MEU}(\emptyset)$None of the above
Option 2 is correct by definition, and option 1 is the expanded version of option 2
(ii) Gaagle, an established company, wants to sell your startup a device that gives you SRead. Given that you already have Bob's device (that gives you $S L o c$), what is the maximum amount of money you should pay for Gaagle's device? Suppose you value $\$ 1$ at 1 utility.
$\square \operatorname{VPI}(S R e a d)$

- $\operatorname{VPI}($ SRead $)-\operatorname{VPI}(S L o c)$$\operatorname{VPI}(S R e a d, S L o c)$
$\square \operatorname{VPI}(S R e a d, S L o c)-\operatorname{VPI}(S L o c)$
\bigcirc None of the above
Choice 4 is correct by definition

Choice 2 is true because $\operatorname{VPI}(\operatorname{SLoc} \mid \operatorname{SRead})=0$, and thus
$\operatorname{VPI}($ SRead $)=\operatorname{VPI}($ SRead $)+0=\operatorname{VPI}($ SRead $)+\operatorname{VPI}($ SLoc \mid SRead $)=\operatorname{VPI}($ SRead, SLoc $)$, which makes choice 2 the same as choice 4

2 Particle Filtering Apprenticeship

We are observing an agent's actions in an MDP and are trying to determine which out of a set $\left\{\pi_{1}, \ldots, \pi_{n}\right\}$ the agent is following. Let the random variable Π take values in that set and represent the policy that the agent is acting under. We consider only stochastic policies, so that A_{t} is a random variable with a distribution conditioned on S_{t} and Π. As in a typical MDP, S_{t} is a random variable with a distribution conditioned on S_{t-1} and A_{t-1}. The full Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting). Unfortunately, however, we, the observer, cannot see the states S_{t}. Thus we are forced to use an adapted particle filtering algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate $P\left(\Pi \mid a_{1: t}\right)$.
(a) The Bayes net for part (a) is

(i) Select all of the following that are guaranteed to be true in this model for $t>3$:
$\square S_{t} \Perp S_{t-2} \mid S_{t-1}$
$\square S_{t} \Perp S_{t-2} \mid S_{t-1}, A_{1: t-1}$
$\square S_{t} \Perp S_{t-2} \mid \Pi$
$\square S_{t} \Perp S_{t-2} \mid \Pi, A_{1: t-1}$
$\square S_{t} \Perp S_{t-2} \mid \Pi, S_{t-1}$
$\square S_{t} \Perp S_{t-2} \mid \Pi, S_{t-1}, A_{1: t-1}$
\square None of the above

We will compute our estimate for $P\left(\Pi \mid a_{1: t}\right)$ by coming up with a recursive algorithm for computing $P\left(\Pi, S_{t} \mid a_{1: t}\right)$. (We can then sum out S_{t} to get the desired distribution; in this problem we ignore that step.)
(ii) Write a recursive expression for $P\left(\Pi, S_{t} \mid a_{1: t}\right)$ in terms of the CPTs in the Bayes net above.

$$
P\left(\Pi, S_{t} \mid a_{1: t}\right) \propto \sum_{s_{t-1}} P\left(\Pi, s_{t-1} \mid a_{1: t-1}\right) P\left(a_{t} \mid S_{t}, \Pi\right) P\left(S_{t} \mid s_{t-1}, a_{t-1}\right)
$$

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s_{t} and a potential policy π_{i}.
(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in the boxes with the correct values so that the algorithm will approximate $P\left(\Pi, S_{t} \mid a_{1: t}\right)$.

1. Elapse time: for each particle $\left(s_{t}, \pi_{i}\right)$, sample a successor s_{t+1} from $P\left(S_{t+1} \mid s_{t}, a_{t}\right)$.

The policy π^{\prime} in the new particle is π_{i}.
2. Incorporate evidence: To each new particle $\left(s_{t+1}, \pi^{\prime}\right)$, assign weight $P\left(a_{t+1} \mid s_{t+1}, \pi^{\prime}\right)$.
3. Resample particles from the weighted particle distribution.
(b) We now observe the acting agent's actions and rewards at each time step (but we still don't know the states). Unlike the MDPs in lecture, here we use a stochastic reward function, so that R_{t} is a random variable with a distribution conditioned on S_{t} and A_{t}. The new Bayes net is given by

Notice that the observed rewards do in fact give useful information since d-separation does not give that $R_{t} \Perp \Pi \mid A_{1: t}$.
(i) Give an active path connecting R_{t} and Π when $A_{1: t}$ are observed. Your answer should be an ordered list of nodes in the graph, for example " $S_{t}, S_{t+1}, A_{t}, \Pi, A_{t-1}, R_{t-1}$ ".
R_{t}, S_{t}, A_{t}, Π. This list reversed is also correct, and many other similar (though more complicated)
(ii) Write a recursive expression for $P\left(\Pi, S_{t} \mid a_{1: t}, r_{1: t}\right)$ in terms of the CPTs in the Bayes net above.

$$
P\left(\Pi, S_{t} \mid a_{1: t}, r_{1: t}\right) \propto \sum_{s_{t-1}} P\left(\Pi, s_{t-1} \mid a_{1: t-1}, r_{1: t-1}\right) P\left(a_{t} \mid S_{t}, \Pi\right) P\left(S_{t} \mid s_{t-1}, a_{t-1}\right) P\left(r_{t} \mid a_{t}, S_{t}\right)
$$

(c) We now observe only the sequence of rewards and no longer observe the sequence of actions. The new Bayes net is shown on the right.

(i) Write a recursive expression for $P\left(\Pi, S_{t}, A_{t} \mid r_{1: t}\right)$ in terms of the CPTs in the Bayes net above.

$$
P\left(\Pi, S_{t}, A_{t} \mid r_{1: t}\right) \propto \sum_{s_{t-1}} \sum_{a_{t-1}} P\left(\Pi, s_{t-1}, a_{t-1} \mid r_{1: t-1}\right) P\left(A_{t} \mid S_{t}, \Pi\right) P\left(S_{t} \mid s_{t-1}, a_{t-1}\right) P\left(r_{t} \mid S_{t}, A_{t}\right)
$$

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s_{t}, a single action a_{t}, and a potential policy π_{i}.
(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in the boxes with the correct values so that the algorithm will approximate $P\left(\Pi, S_{t}, A_{t} \mid r_{1: t}\right)$.

1. Elapse time: for each particle $\left(s_{t}, a_{t}, \pi_{i}\right)$, sample a successor state s_{t+1} from $P\left(S_{t+1} \mid s_{t}, a_{t}\right)$.

Then, sample a successor action a_{t+1} from $P\left(A_{t+1} \mid s_{t+1}, \pi_{i}\right)$.
The policy π^{\prime} in the new particle is π_{i}.
2. Incorporate evidence: To each new particle $\left(s_{t+1}, a_{t+1}, \pi^{\prime}\right)$, assign weight $P\left(r_{t+1} \mid s_{t+1}, a_{t+1}\right)$.
3. Resample particles from the weighted particle distribution.

