
CS 188
Spring 2023 Final Review: Machine Learning
Q1. Kernel Perceptron
Remember that the perceptron update rule looks like:

w ← w + yx

for input feature vectors x and class labels y ∈ {−1, 1}. If wx = 0, we predict positive label.

(a) Suppose w = [1, 1] initially, and we observe the following training examples:

x0 x1 y
1 2 -1
3 1 1
1 1 -1
1 0 1

What is the final value of w?

(b) Notice that because of the update rule, the final weight vector w∗ is just a linear combination of training
examples and the initializer. Suppose we iterate over the training set following the order in the table until
all the training samples are classified correctly, fill in the coefficients below:

w =

[
1
1

]
+ ·

[
1
2

]
+ ·

[
3
1

]
+ ·

[
1
1

]
+ ·

[
1
0

]
This means that instead of explicitly representing w as a vector of feature weights, we can implicitly represent
the decision rule with a vector v with one weight per example.

(c) Now suppose x and w are D-dimensional, and we have N training examples. How many numbers do I
need to represent w explicitly?

(d) How many numbers do I need to represent w implicitly? (Assume that the initial value for w is public
information so you do not need to consume any memory to store it.)

(e) Write the update rule for the implicit representation if you pick the ith training sample (use ei to represent
a vector whose ith position is 1 and all the other positions are 0s):

v ←

(f) Write the prediction rule for the implicit representation if the initial w is a zero vector. You can use vi to
represent the ith value from v and xi to represent the ith training sample:

pred(x) =

(g) When is it more space-efficient to use the implicit representation? (Your answer should be at most three
words/symbols, and be expressed in terms of D and N .)

1



(h) Now suppose x is two-dimensional, and we introduce a feature transformation

f(x) = [x2
0, x

2
1,
√
2x0,
√
2x1,
√
2x0x1, 1]

It is not too hard to show that for any vectors a and b,

f(a) · f(b) = (a · b+ 1)2

How can we take advantage of this fact when working with the implicit representation? (Your answer
should be 1 sentence.)
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Q2. A Nonconvolutional Nontrivial Network
You have a robotic friend MesutBot who has trouble passing Recaptchas (and Turing tests in general). MesutBot
got a 99.99% on the last midterm because he could not determine which squares in the image contained stop
signs. To help him ace the final, you decide to design a few classifiers using the below features.

• A = 1 if the image contains an octagon, else 0.

• B = 1 if the image contains the word STOP, else 0.

– S = 1 if the image contains the letter S, else 0.

– T = 1 if the image contains the letter T, else 0.

– O = 1 if the image contains the letter O, else 0.

– P = 1 if the image contains the letter P, else 0.

• C = 1 if the image is more than 50% red in color, else
0.

• D = 1 if the image contains a post, else 0.

Y

A B C D

S T O P

(a) First, we use a Naive Bayes-inspired approach to determine which images have stop signs based on the
features and Bayes Net above. We use the following features to predict Y = 1 if the image has a stop sign
anywhere, or Y = 0 if it doesn’t.

(i) Which expressions would a Naive Bayes model use to predict the label for B if given the values for
features S = s, T = t, O = o, P = p? Choose all valid expressions.

□ b = argmax
b

P (b)P (s|b)P (t|b)P (o|b)P (p|b)

□ b = argmax
b

P (s|b)P (t|b)P (o|b)P (p|b)

□ b = argmax
b

P (b, s, t, o, p)

□ b = argmax
b

P (s, t, o, p|b)
# None

You note that features are inputs into a neural network and the output is a label, so you modify the Bayes Net
from above into a Neural Network computation graph. Recall the logistic function s(x) = 1

1+e−x has derivative
∂s(x)
∂x = s(x)[1− s(x)]
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(b) For this part, ignore the dashed edge when calculating the below.

(i) What is ∂Loss
∂wA

?

# ∂Loss
∂s(X) · [s(X) · (1− s(X))] ·A

# 2(s(X)− y∗) · [s(X) · (1− s(X))] ·A
# ∂Loss

∂s(X) · [s(X) · (1− s(X))] · 2A
# 2(s(X)− y∗) · [s(X) · (1− s(X))] ·A+ 1
# ∂Loss

∂s(X) · [s(X) · (1− s(X))] ·A+ 1

# None

(ii) What is ∂Loss
∂wS

? Keep in mind we are still ignoring the dotted edge in this subpart.

# ∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S

# 2(s(X)− y∗) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S

# ∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· 2S

# 2(s(X)− y∗) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S + S

# ∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S + S

# None
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