
CS 188
Spring 2023 Final Review: Search/Logic Solutions

Q1. Power Pellets
Consider a Pacman game where Pacman can eat 3 types of pellets:

• Normal pellets (n-pellets), which are worth one point.

• Decaying pellets (d-pellets), which are worth max(0, 5− t) points, where t is time.

• Growing pellets (g-pellets), which are worth t points, where t is time.

The location and type of each pellet is fixed. The pellet’s point value stops changing once eaten. For example,
if Pacman eats one g-pellet at t = 1 and one d-pellet at t = 2, Pacman will have won 1 + 3 = 4 points.

Pacman needs to find a path to win at least 10 points but he wants to minimize distance travelled. The cost
between states is equal to distance travelled.

(a) Which of the following must be including for a minimum, sufficient state space?

■ Pacman’s location
□ Location and type of each pellet
□ How far Pacman has travelled
■ Current time
□ How many pellets Pacman has eaten and the point value of each eaten pellet
■ Total points Pacman has won
■ Which pellets Pacman has eaten

A state space should include which pellets are left on the board, the current value of pellets, Pacman’s location,
and the total points collected so far. With this in mind:
(1) The starting location and type of each pellet are not included in the state space as this is something that
does not change during the search. This is analogous to how the walls of a Pacman board are not included in
the state space.
(2) How far Pacman has travelled does not need to be explicitly tracked by the state, since this will be reflected
in the cost of a path.
(3) Pacman does need the current time to determine the value of pellets on the board.
(4) The number of pellets Pacman has eaten is extraneous.
(5) Pacman must track the total number of points won for the goal test.
(6) Pacman must know which pellets remain on the board, which is the complement of the pellets he has eaten.

(b) Which of the following are admissible heuristics? Let x be the number of points won so far.

■ Distance to closest pellet, except if in the goal state, in which case the heuristic value is 0.
□ Distance needed to win 10− x points, determining the value of all pellets as if they were n-pellets.
■ Distance needed to win 10−x points, determining the value of all pellets as if they were g-pellets (i.e.
all pellet values will be t.)

□ Distance needed to win 10−x points, determining the value of all pellets as if they were d-pellets (i.e.
all pellet values will be max(0, 5− t).

□ Distance needed to win 10− x points assuming all pellets maintain current point value (g-pellets stop
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increasing in value and d-pellets stop decreasing in value)

□ None of the above

(1) Admissible; to get 10 points Pacman will always have to travel at least as far as the distance to the closest
pellet, so this will always be an underestimate.
(2) Not admissible; if all the pellets are actually g-pellets, assuming they are n-pellets will lead to Pacman
collecting more pellets in more locations, and thus travel further.
(3) Ambiguous; if pellets are n-pellets or d-pellets, Pacman will generally have to go further, except at the
beginning of the game when d-pellets are worth more, in which case this heuristic will over-estimate the cost to
the goal. However, if Pacman is allowed to stay in place with no cost, then this heuristic is admissable because
the heuristic will instead calculate all pellet values as 10. This option was ignored in scoring.
(4) Not admissible; if pellets are n-pellets or g-pellets, Pacman would have an overestimate.
(5) Not admissible; if pellets are g-pellets, then using the current pellet value might lead Pacman to collect more
locations, and thus travel further than necesarry.

(c) Instead of finding a path which minimizes distance, Pacman would like to find a path which minimizes
the following:

Cnew = a ∗ t+ b ∗ d

where t is the amount of time elapsed, d is the distance travelled, and a and b are non-negative constants
such that a+ b = 1. Pacman knows an admissible heuristic when he is trying to minimize time (i.e. when
a = 1, b = 0), ht, and when he is trying to minimize distance, hd (i.e. when a = 0, b = 1).
Which of the following heuristics is guaranteed to be admissible when minimizing Cnew?

□ mean(ht, hd) ■ min(ht, hd) □ max(ht, hd) ■ a ∗ ht + b ∗ hd

□ None of the above

For this question, think about the inequality Cnew = a ∗ t+ b ∗ d ≥ a ∗ ht + b ∗ hd. We can guarantee a heuristic
hnew is admissible if hnew ≤ a ∗ ht + b ∗ hd

(1) If a = b, 0.5 ∗ ht + 0.5 ∗ hd is not guaranteed to be less than a ∗ ht + b ∗ hd, so this will not be admissible.
(2) min(ht, hd) = a ∗min(ht, hd) + b ∗min(ht, hd) ≤ a ∗ ht + b ∗ hd

(3) max(ht, hd) will be greater than a ∗ ht + b ∗ hd unless ht = hd, wo this will not be admissible.
(4) Admissible.
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Q2. Coin Stars
In a new online game called Coin Stars, all players are walking around an M x N grid to collect hidden coins,
which only appear when you’re on top of them. There are also power pellets scattered across the board,
which are visible to all players. If you walk onto a square with a power pellet, your power level goes up by 1,
and the power pellet disappears. Players will also attack each other if one player enters a square occupied by
another player. In an attack, the player with a higher power level will steal all the coins from the other player.
If they have equal power levels, nothing happens. Each turn, players go in order to move in one of the following
directions: {N, S, E, W}.

In this problem, you and your friend Amy are playing Coin Stars against each other. You are player 1, and your
opponent Amy is player 2. Our state space representation includes the locations of the power pellets (xpj , ypj )
and the following player information: (1) Each player’s location (xi, yi); (2) Each player’s power level li; (3)
Each player’s coin count ci.

(a) Suppose a player wins by collecting more coins at the end of a number of rounds, so we can formulate this
as a minimax problem with the value of the node being c1 − c2. Consider the following game tree where
you are the maximizing player (maximizing the your net advantage, as seen above) and the opponent is the
minimizer. Assuming both players act optimally, if a branch can be pruned, fill in its square completely,
otherwise leave the square unmarked.

 None of the above can be pruned
If you traverse the tree with α− β pruning, you will see that no branches can be pruned

(b) Suppose that instead of the player with more coins winning, every player receives payout equal to the
number of coins they’ve collected. Can we still use a multi-layer minimax tree (like the one above) to find
the optimal action?

# Yes, because the update in payout policy does not affect the minimax structure of the game.

# Yes, but not for the reason above

# No, because we can no longer model the game under the updated payout policy with a game tree.

 No, but not for the reason above

No, because the game is no longer zero-sum: your opponent obtaining more coins does not necessarily
make you worse off, and vice versa. We can still model this game with a game-tree, where each node
contains a tuple of two values, instead of a single value. But this means the tree is no longer a minimax
tree.
An example of using the minimax tree but not optimizing the number of coins collected: when given a
choice between gathering 3 coins or stealing 2 coins from the opponent, the minimax solution with c1− c2
will steal the 2 coins (net gain of 4), even though this will cause it to end up with fewer coins.
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