Today

- Efficient Solution of CSPs
- Iterative Improvement
- Local Search
Review: CSPs

- **CSPs:**
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

- **Goals:**
 - Here: find any solution
 - Also: find all, find best, etc.
K-Consistency
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
Ordering
- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

- Combining these ordering ideas makes 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]
Problem Structure

- **Extreme case: independent subproblems**
 - Example: Tasmania and mainland do not interact

- **Independent subproblems are identifiable as connected components of constraint graph**

- **Suppose a graph of n variables can be broken into subproblems of only c variables:**
 - Worst-case solution cost is $O\left(\left\lceil \frac{n}{c} \right\rceil \cdot d^c \right)$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n \, d^2) \) time
 - Compare to general CSPs, where worst-case time is \(O(d^n) \)

- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning
Tree-Structured CSPs

- **Algorithm for tree-structured CSPs:**
 - **Order:** Choose a root variable, order variables so that parents precede children
 - **Remove backward:** For $i = n : 2$, apply `RemoveInconsistent(Parent(X_i),X_i)`
 - **Assign forward:** For $i = 1 : n$, assign X_i consistently with `Parent(X_i)`

- **Runtime:** $O(n d^2)$ (why?)
Tree-Structured CSPs

- **Claim 1:** After backward pass, all root-to-leaf arcs are consistent
 - **Proof:** Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

- **Claim 2:** If root-to-leaf arcs are consistent, forward assignment will not backtrack
 - **Proof:** Induction on position

- Why doesn’t this algorithm work with cycles in the constraint graph?
- **Note:** we’ll see this basic idea again with Bayes’ nets
Improving Structure
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left((d^c) (n-c) d^2 \right)$, very fast for small c
Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)
Find the smallest cutset for the graph below.
Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

\[
\begin{align*}
&\{(WA=r, SA=g, NT=b), (WA=b, SA=r, NT=g), \ldots\} \\
&\{(NT=r, SA=g, Q=b), (NT=b, SA=g, Q=r), \ldots\} \\
&\{(NS, W, SA), (NS, W, Q), \ldots\} \\
&\{((WA=g, SA=g, NT=g), (NT=g, SA=g, Q=g)), \ldots\}
\end{align*}
\]
Iterative Improvement
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)
Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256 \text{ states}) \)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(c(n) = \text{number of attacks} \)

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints

- Basic solution: backtracking search

- Speed-ups:
 - Ordering
 - Filtering
 - Structure

- Iterative min-conflicts is often effective in practice
Local Search
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)

- Local search: improve a single option until you can’t make it better (no fringe!)

- New successor function: local changes

- Generally much faster and more memory efficient (but incomplete and suboptimal)
Hill Climbing

- **Simple, general idea:**
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- **What’s bad about this approach?**
 - Complete?
 - Optimal?

- **What’s good about it?**
Hill Climbing Quiz

Starting from X, where do you end up?
Starting from Y, where do you end up?
Starting from Z, where do you end up?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
         schedule, a mapping from time to "temperature"

local variables: current, a node
                 next, a node
                 T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^Δ E/T
```
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution: \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- **Is this an interesting guarantee?**

- **Sounds like magic, but reality is reality:**
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety

- Possibly the most misunderstood, misapplied (and even maligned) technique around

![Diagram showing genetic algorithm process](image-url)
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Next Time: Adversarial Search!