Announcements

- **Homework 2 due today (Sept 19) at 11:59pm PT**

- **Project 2 due this Friday (Sept 22) at 11:59pm PT**
CS 188: Artificial Intelligence

Markov Decision Processes I

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Preview of Next Two Weeks

This week: value iteration and policy iteration
- Assumes we can query model of the world

Next week: learning from trial and error
- Learn only from interactions with the world
Examples of (Deep) Reinforcement Learning

2013: Playing Atari games

Pong Enduro Beamrider Q*bert

[Human-level control through deep reinforcement learning. Mnih et al. Nature 2015]
Examples of (Deep) Reinforcement Learning

2015: Locomotion from trial and error

[Trust Region Policy Optimization. Schulman et al. ICLR 2015]
Examples of (Deep) Reinforcement Learning

2016: Playing Go (and beating human champion)

Examples of (Deep) Reinforcement Learning

2019: Robot manipulation

[Solving Rubik's cube with a robot hand. OpenAI. 2019]
Examples of (Deep) Reinforcement Learning

2022: Nuclear fusion plasma control

Examples of (Deep) Reinforcement Learning

2022: Training Language Models with Human Feedback

ChatGPT: Optimizing Language Models for Dialogue

We’ve trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate hypotheses. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a response.

[Aligning language models to follow instructions. Ouyang et al. 2022]
Examples of (Deep) Reinforcement Learning

2022: Economic policy design?

The AI Economist: Taxation policy design via two-level deep multiagent RL. Zheng et al. Science 2022
Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state
 - Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state:

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots, S_0 = s_0)
\]

\[=

P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

For MDPs, we want an optimal policy π^*: $S \rightarrow A$.
- A policy π gives an action for each state.
- An optimal policy is one that maximizes expected utility if followed.
- An explicit policy defines a reflex agent.

Expectimax didn’t compute entire policies.
- It computed the action for a single state only.
Optimal Policies

![Diagram showing different optimal policies with rewards R(s) = -0.01, -0.03, -0.4, and -2.0.]
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

![Diagram showing the states and actions of the racing scenario]

Optimal Policy:
\[
\begin{align*}
\pi^*(\text{Cool}) &= \text{Fast} \\
\pi^*(\text{Warm}) &= \text{Slow} \\
\pi^*(\text{Overheated}) &= \text{end}
\end{align*}
\]
Racing Search Tree
Each MDP state projects an expectimax-like search tree

(s, a) is a q-state

(s, a, s') called a transition

\[T(s, a, s') = P(s' | s, a) \]

\[R(s, a, s') \]
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?

- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)

- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now

Worth Next Step

Worth In Two Steps
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - \(U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3 = 2.75 \)
 - \(U([3,2,1]) = 1 \times 3 + 0.5 \times 2 + 0.25 \times 1 = 5.25 \)
 - \(U([1,2,3]) < U([3,2,1]) \)
Discounting in Public Policy

COUNCIL OF ECONOMIC ADVISERS ISSUE BRIEF
JANUARY 2017

DISCOUNTING FOR PUBLIC POLICY:
THEORY AND RECENT EVIDENCE ON THE MERITS OF
UPDATING THE DISCOUNT RATE

Weighing benefits and costs that take place over time requires discounting those amounts to present value equivalents. This necessitates selecting a discount rate which can adjust for the fact that resources are more valuable today than in the future if consumers prefer to consume today rather than wait, or if firms could be earning a positive return on invested resources. Current guidance from the office of management and budget requires using both a 7 percent and 3 percent real discount rate in regulatory benefit-cost analyses. This issue brief reassesses the current choice of discount rates and methodologies for selecting the 3 percent and 7 percent rates. Empirical evidence suggests that real interest rates around the world have come down since the last evaluation of the rates, and new theoretical advances considering future uncertainty likely suggest lower long term rates, as well. In general the evidence supports lowering these discount rates, with a plausible best guess based on the available information being that the lower discount rate should be at most 2 percent while the upper discount rate should also likely be reduced.

\[\gamma = 0.93 \text{ or } 0.97 \]
Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

Quiz 1: For $\gamma = 1$, what is the optimal policy?

Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

Quiz 3: For which γ are West and East equally good when in state d?
Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?

- **Solutions:**
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)

Shaunae Miller wins 400m gold medal in 2016 Olympics [Photo credit: NBC]
Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

 $U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{max}/(1 - \gamma)$

 - Smaller γ means smaller “horizon” – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' \mid s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
Recall: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward
Racing Search Tree
We’re doing way too much work with expectimax!

Problem: States are repeated
- Idea: Only compute needed quantities once, cache the rest in a lookup table

Problem: Tree goes on forever
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot of Demo – Gridworld V^* Values

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q* Values

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld π^* Values

Noise = 0.2
Discount = 0.9
Living reward = 0
Values of States

- Recursive definition of value (similar to expectimax):

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- But how do we solve these equations?
Time-Limited Values

- Key idea: time-limited values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 5 ITERATIONS

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=6$

VALUES AFTER 6 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.73</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.41</td>
<td></td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>0.31</td>
<td>0.43</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

Values after 9 iterations:

- Top left: 0.64
- Top middle: 0.74
- Top right: 0.85
- Middle left: 0.55
- Middle: 0.57
- Middle right: -1.00
- Bottom left: 0.46
- Bottom middle: 0.40
- Bottom right: 0.47
- Bottom line: 0.27

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 100 \)

VALUES AFTER 100 ITERATIONS

\[
\begin{array}{cccc}
0.64 & 0.74 & 0.85 & 1.00 \\
0.57 & \text{---} & 0.57 & -1.00 \\
0.49 & 0.43 & 0.48 & 0.28 \\
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_4(\text{•}) \quad V_4(\text{•}) \quad V_4(\text{•}) \]

\[V_3(\text{•}) \quad V_3(\text{•}) \quad V_3(\text{•}) \]

\[V_2(\text{•}) \quad V_2(\text{•}) \quad V_2(\text{•}) \]

\[V_1(\text{•}) \quad V_1(\text{•}) \quad V_1(\text{•}) \]

\[V_0(\text{•}) \quad V_0(\text{•}) \quad V_0(\text{•}) \]
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

- Given vector of $V_k(s)$ values, do one step of expectimax from each state:

 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence, which yields V^*

- Complexity of each iteration: $O(S^2A)$

- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

Value Iteration

- **Value Iteration Equation**: $V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

States and Transitions

<table>
<thead>
<tr>
<th>State</th>
<th>Transition 1</th>
<th>Transition 2</th>
<th>Transition 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Assumptions**
 - No discount ($\gamma = 1$)

- **Transitions**
 - **Slow**
 - Transition to **Cool**: Probability 0.5, Reward 1
 - Transition to **Warm**: Probability 0.5, Reward 1

- **Fast**
 - Transition to **Overheated**: Probability 1.0, Reward -10

- **Cool**
 - Transition to **Fast**: Probability 0.5, Reward 2

- **Warm**
 - Transition to **Fast**: Probability 0.5, Reward 2
Example: Value Iteration

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]

Assume no discount!

\[
V_0 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
\]

\[
V_1 = \begin{bmatrix} ? & ? & ? & ? \end{bmatrix}
\]

\[
V_2 = \begin{bmatrix} \ ? & \ ? & \ ? & \ ? \end{bmatrix}
\]

\[
a = \text{slow}: \quad 1(1 + 0) = 1
\]

\[
a = \text{fast}: \quad 0.5(2 + 0) + 0.5(2 + 0) = 2
\]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

\(a = \text{slow}: \quad 0.5(1 + 0) + 0.5(1 + 0) = 1 \)

\(a = \text{fast}: \quad 1(-10 + 0) = -10 \)
Example: Value Iteration

<table>
<thead>
<tr>
<th>V_2</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>2 1 0</td>
</tr>
<tr>
<td>V_0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- **a=slow:**
 $$1(1 + 2) = 3$$

- **a=fast:**
 $$0.5(2 + 2) + 0.5(2 + 1) = 3.5$$
Example: Value Iteration

<table>
<thead>
<tr>
<th></th>
<th>V₀</th>
<th>V₁</th>
<th>V₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

a=slow: \(0.5(1 + 2) + 0.5(1 + 1) = 2.5 \)

a=fast: \(1(-10 + 0) = -10 \)
Example: Value Iteration

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]
What we did today

- Working with stochastic environments (but world model known)
- Introduced MDPs (describe problem) and policies (solution)
 - MDPs look similar to expectimax search trees
- Discussed how to solve MDPs
 - Optimal state value $V^*(s)$, and q-state value $Q^*(s,a)$ are key quantities
 - Bellman equation characterizes the optimal value function:
 $$V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$
 - A key equation in RL and this class!
- Value iteration is an algorithm to solve the Bellman equation
Next Time: Policy-Based Methods