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Q1. CSP: Air Traffic Control
We have five planes: A, B, C, D, and E and two runways: international (28L/28R) and domestic (1L/1R) (simplified from the
SFO runway configuration). We would like to schedule a time slot and runway for each aircraft to either land or take off. We
have four time slots: {1, 2, 3, 4} for each runway, during which we can schedule a landing or take off of a plane. We must find
an assignment that meets the following constraints:

• Plane B has lost an engine and must land in time slot 1.
• Plane D can only arrive at the airport to land during or after time slot 3.
• Plane A is running low on fuel but can last until at most time slot 2.
• Plane D must land before plane C takes off, because some passengers must transfer from D to C.
• No two aircrafts can reserve the same time slot for the same runway.

(a) Complete the formulation of this problem as a CSP in terms of variables, domains, and constraints (both unary and bi-
nary). Constraints should be expressed implicitly using mathematical or logical notation rather than with words.

Variables: A, B, C, D, E for each plane.
Domains: a tuple (runway type, time slot) for runway type ∈ {𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐} and time slot ∈ {1, 2, 3, 4}.
Constraints:

𝐵[1] = 1

𝐷[1] ≥ 3

𝐴[1] ≤ 2

𝐷[1] < 𝐶[1]

𝐴 ≠ 𝐵 ≠ 𝐶 ≠ 𝐷 ≠ 𝐸

(b) For the following subparts, we add the following two constraints:
• Planes A, B, and C cater to international flights and can only use the international runway.
• Planes D and E cater to domestic flights and can only use the domestic runway.

(i) With the addition of the two constraints above, we completely reformulate the CSP. You are given the variables and
domains of the new formulation. Complete the constraint graph for this problem given the original constraints and
the two added ones.

Variables: A, B, C, D, E for each plane.
Domains: {1, 2, 3, 4}

Explanation of Constraint Graph:
We can now encode the runway information into the
identity of the variable, since each runway has more than
enough time slots for the planes it serves. We repre-
sent the non-colliding time slot constraint as a binary

constraint between the planes that use the same runways.
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Constraint Graph: 𝐴 𝐵

𝐶 𝐷

𝐸

(ii) What are the domains of the variables after enforcing arc-consistency? Begin by enforcing unary constraints. (Cross
out values that are no longer in the domain.)

A 1 2 3 4
B 1 2 3 4
C 1 2 3 4
D 1 2 3 4
E 1 2 3 4

(iii) Arc-consistency can be rather expensive to enforce, and we believe that we can obtain faster solutions using only
forward-checking on our variable assignments. Using the Minimum Remaining Values heuristic, perform back-
tracking search on the graph, breaking ties by picking lower values and characters first. List the (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)
pairs in the order they occur (including the assignments that are reverted upon reaching a dead end). Enforce unary
constraints before starting the search.

(You don’t have to use this table, it won’t be graded.)
A 1 2 3 4
B 1 2 3 4
C 1 2 3 4
D 1 2 3 4
E 1 2 3 4

Answer: (B, 1), (A, 2), (C, 3), (C, 4), (D, 3), (E, 1)
(c) Suppose we have just one runway and 𝑛 planes, where no two planes can use the runway at once. We are assured that the

constraint graph will always be tree-structured and that a solution exists. What is the runtime complexity in terms of the
number of planes, 𝑛, of a CSP solver that runs arc-consistency and then assigns variables in a topological ordering?

# 𝑂(1)
# 𝑂(𝑛)
# 𝑂(𝑛2)
 𝑂(𝑛3)
# 𝑂(𝑛𝑛)
# None of the Above

Modified AC-3 for tree-structured CSPs runs arc-consistency backwards and then assigns variables in forward topological
(linearized) ordering so we that we don’t have to backtrack. The runtime complexity of modified AC-3 for tree-structured
CSPs is 𝑂(𝑛𝑑2), but note that the domain of each variable must have a domain of size at least 𝑛 since a solution exists
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Q2. CSPs
In this question, you are trying to find a four-digit number satisfying the following conditions:

1. the number is odd,
2. the number only contains the digits 1, 2, 3, 4, and 5,
3. each digit (except the leftmost) is strictly larger than the digit to its left.

(a) CSPs
We will model this as a CSP where the variables are the four digits of our number, and the domains are the five digits we
can choose from. The last variable only has 1, 3, and 5 in its domain since the number must be odd. The constraints are
defined to reflect the third condition above. Thus before we start executing any algorithms, the domains are

(i) Before assigning anything, enforce arc consistency. Write the values remaining in the domain of each variable after
arc consistency is enforced.

(ii) With the domains you wrote in the previous part, which variable will the MRV (Minimum Remaining Value) heuris-
tic choose to assign a value to first? If there is a tie, choose the leftmost variable.
# The first digit (leftmost)
# The second digit
# The third digit
 The fourth digit (rightmost)

(iii) Now suppose we assign to the leftmost digit first. Assuming we will continue filtering by enforcing arc consistency,
which value will LCV (Least Constraining Value) choose to assign to the leftmost digit? Break ties from large (5)
to small (1).

■ 1
□ 2
□ 3
□ 4
□ 5

(iv) Now suppose we are running min-conflicts to try to solve this CSP. If we start with the number 1332, what will our
number be after one interation of min-conflicts? Break variable selection ties from left to right, and break value
selection ties from small (1) to large (5).

1232

(b) The following questions are completely unrelated to the above parts. Assume for these following questions, there are only
binary constraints unless otherwise specified.

(i) [true or false] When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates
does not depend on the order in which arcs are processed from the queue.

(ii) [true or false] Once arc consistency is enforced as a pre-processing step, forward checking can be used during
backtracking search to maintain arc consistency for all variables.
False. Forward checking makes the current variable arc-consistent, but doesn?t look ahead and make all the other
variables arc-consistent.
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(iii) In a general CSP with 𝑛 variables, each taking 𝑑 possible values, what is the worst case time complexity of enforcing
arc consistency using the AC-3 method discussed in class?
# 0 # 𝑂(1) # 𝑂(𝑛𝑑2)  𝑂(𝑛2𝑑3) # 𝑂(𝑑𝑛) # ∞
𝑂(𝑛2𝑑3). There are up to 𝑛2 constraints. There are 𝑑2 comparisons for enforcing arc consistency per each constraint,
and each constraint can be inserted to the queue up to 𝑑 times because each variable has at most 𝑑 values to delete.

(iv) In a general CSP with 𝑛 variables, each taking 𝑑 possible values, what is the maximum number of times a back-
tracking search algorithm might have to backtrack (i.e. the number of the times it generates an assignment, partial
or complete, that violates the constraints) before finding a solution or concluding that none exists?
# 0 # 𝑂(1) # 𝑂(𝑛𝑑2) # 𝑂(𝑛2𝑑3)  𝑂(𝑑𝑛) # ∞
𝑂(𝑑𝑛). In general, the search might have to examine all possible assignments.

(v) What is the maximum number of times a backtracking search algorithm might have to backtrack in a general CSP,
if it is running arc consistency and applying the MRV and LCV heuristics?
# 0 # 𝑂(1) # 𝑂(𝑛𝑑2) # 𝑂(𝑛2𝑑3)  𝑂(𝑑𝑛) # ∞
𝑂(𝑑𝑛). The MRV and LCV heuristics are often helpful to guide the search, but are not guaranteed to reduce back-
tracking in the worst case.
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