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Introduction to
Artificial Intelligence Exam Prep 3 Solutions

Q1. Games
Alice is playing a two-player game with Bob, in which they move alternately. Alice is a maximizer. Although Bob is also
a maximizer, Alice believes Bob is a minimizer with probability 0.5, and a maximizer with probability 0.5. Bob is aware of
Alice’s assumption.
In the game tree below, square nodes are the outcomes, triangular nodes are Alice’s moves, and round nodes are Bob’s moves.
Each node for Alice/Bob contains a tuple, the left value being Alice’s expectation of the outcome, and the right value being
Bob’s expectation of the outcome.
Tie-breaking: choose the left branch.
The left values are Alice’s expectations, and are the only thing Alice can refer to when making decisions.
The right values are Bob’s expectations, and they also accurately track the expected outcome of the game according to each
choice of branching (regardless of it is Alice’s or Bob’s decision, since Bob has all the information). Hence the right values are
accurate information about the game, and would be what Bob looks at when making his decisions. However, when it is Alice’s
turn to make decisions, Bob will think about how Alice would maximize the outcome w.r.t to what she believes, and he will
update his expectations accordingly.

(a) In the blanks below, fill in the tuple values for tuples (𝐵𝑎, 𝐵𝑏) and (𝐸𝑎, 𝐸𝑏) from the above game tree.

(𝐵𝑎, 𝐵𝑏) = ( 5 , 9 )

(𝐸𝑎, 𝐸𝑏) = ( 7 , 13 )

For a square node, its value v means the same to Alice and Bob, i.e., we can think of it as a tuple (v,v).

The left value of Alice’s nodes is the maximum of the left values of it’s children nodes, since Alice believes that the values
of the nodes are given by left values, and it’s her turn of action, so she will choose the largest value.
The right value of Alice’s nodes is the right value from the child node that attains the maximum left value since Bob’s
expectation is consistent with how Alice will act.
So for a triangular node, its tuple is the same as its child that has the maximum left value.

The left value of Bob’s nodes is the average of the maximum and minimum of the left values of it’s children nodes since
Alice believes Bob is 50% possible to be adversarial and 50% possible to be friendly.
The right value of Bob’s nodes is the maximum of the right values of the immediate children nodes since Bob would
choose the branch that gives the maximum outcome during his turn.
So for a round node, left = 0.5(max(children.left) + min(children.left)), and right = max(children.right).

(b) In this part, we will determine the values for tuple (𝐷𝑎, 𝐷𝑏).
(i) 𝐷𝑎 = # 8 # X # 8+X  4+0.5X # min(8,X) # max(8,X)

(ii) 𝐷𝑏 = # 8 # X # 8+X # 4+0.5X # min(8,X)  max(8,X)
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It’s a round node, so left = 0.5(max(children.left) + min(children.left)), and right = max(children.right).
Its children: (8,8) and (X,X). So left = 0.5(8+X) = 4+0.5X, and right = max(8, X).

(c) Fill in the values for tuple (𝐶𝑎, 𝐶𝑏) below. For the bounds of X, you may write scalars, ∞ or −∞.
If your answer contains a fraction, please write down the corresponding simplified decimal value in its place. (i.e., 4
instead of 8

2 , and 0.5 instead of 1
2 ).

1. If −∞ < X < 6 , (𝐶𝑎, 𝐶𝑏) = ( 7 , 13 )

2. Else, (𝐶𝑎, 𝐶𝑏) = ( 4+0.5X , max( 8 , X ) )

It’s a triangular node, so its tuple is the same as its child that has the maximum left value.
Its children: (4+0.5X, max(8,X)) and (7, 13).
So if 4+0.5X < 7, i.e. −∞ < 𝑋 < 6, it’s the same as child node (7, 13), and otherwise it’s (4+0.5X, max(8,X)).

(d) Fill in the values for tuple (𝐴𝑎, 𝐴𝑏) below. For the bounds of X, you may write scalars, ∞ or −∞.
If your answer contains a fraction, please write down the corresponding simplified decimal value in its place. (i.e., 4
instead of 8

2 , and 0.5 instead of 1
2 ).

1. If −∞ < X < 6 , (𝐴𝑎, 𝐴𝑏) = ( 6 , 13 )

2. Else, (𝐴𝑎, 𝐴𝑏) = ( 4.5+0.25X , max( 9 , X ) )

It’s a round node, so left = 0.5(max(children.left) + min(children.left)), and right = max(children.right).
Its children: (5,9) and node "Part (c)".
If −∞ < 𝑋 < 6, these children are (5,9) and (7, 13).
left = 0.5(max(children.left) + min(children.left)) = 0.5(5+7) = 6
right = max(children.right) = max(9, 13) = 13.
Otherwise (6 < 𝑋 < +∞), these children are (5,9) and (4+0.5X, max(8,X)).
left = 0.5(max(children.left) + min(children.left)) = 0.5(5+4+0.5X) = 4.5 + 0.25𝑋
right = max(children.right) = max(9, max(8,X)) = max(9,X).

2



Q2. MedianMiniMax
You’re living in utopia! Despite living in utopia, you still believe that you need to maximize your utility in life, other people want
to minimize your utility, and the world is a 0 sum game. But because you live in utopia, a benevolent social planner occasionally
steps in and chooses an option that is a compromise. Essentially, the social planner (represented as the pentagon) is a median
node that chooses the successor with median utility. Your struggle with your fellow citizens can be modelled as follows:

There are some nodes that we are sometimes able to prune. In each part, mark all of the terminal nodes such that there exists
a possible situation for which the node can be pruned. In other words, you must consider all possible pruning situations.
Assume that evaluation order is left to right and all 𝑉𝑖’s are distinct.

Note that as long as there exists ANY pruning situation (does not have to be the same situation for every node), you should mark
the node as prunable. Also, alpha-beta pruning does not apply here, simply prune a sub-tree when you can reason that its value
will not affect your final utility.

(a) □ 𝑉1
□ 𝑉2
□ 𝑉3
□ 𝑉4
■ None

(b) □ 𝑉5
■ 𝑉6
■ 𝑉7
■ 𝑉8
□ None

(c) □ 𝑉9
□ 𝑉10
■ 𝑉11
■ 𝑉12
□ None

(d) □ 𝑉13
■ 𝑉14
■ 𝑉15
■ 𝑉16
□ None
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Part a:
For the left median node with three children, at least two of the childrens’ values must be known since one of them will be
guaranteed to be the value of the median node passed up to the final maximizer. For this reason, none of the nodes in part a can
be pruned.

Part b (pruning 𝑉7, 𝑉8 ):
Let𝑚𝑖𝑛1, 𝑚𝑖𝑛2, 𝑚𝑖𝑛3 be the values of the three minimizer nodes
in this subtree.

In this case, we may not need to know the final value 𝑚𝑖𝑛3. The
reason for this is that we may be able to put a bound on its value
after exploring only partially, and determine the value of the
median node as either 𝑚𝑖𝑛1 or 𝑚𝑖𝑛2 if 𝑚𝑖𝑛3 ≤ min (𝑚𝑖𝑛1, 𝑚𝑖𝑛2)
or 𝑚𝑖𝑛3 ≥ max (𝑚𝑖𝑛1, 𝑚𝑖𝑛2).

We can put an upper bound on 𝑚𝑖𝑛3 by exploring the left
subtree 𝑉5, 𝑉6 and if max (𝑉5, 𝑉6) is lower than both 𝑚𝑖𝑛1
and 𝑚𝑖𝑛2, the median node’s value is set as the smaller of
𝑚𝑖𝑛1, 𝑚𝑖𝑛2 and we don’t have to explore 𝑉7, 𝑉8 in Figure 1.

Part b (pruning 𝑉6):
It’s possible for us to put a lower bound on 𝑚𝑖𝑛3. If 𝑉5 is larger
than both 𝑚𝑖𝑛1 and 𝑚𝑖𝑛2, we do not need to explore 𝑉6.

The reason for this is subtle, but if the minimizer chooses the
left subtree, we know that 𝑚𝑖𝑛3 ≥ 𝑉5 ≥ max (𝑚𝑖𝑛1, 𝑚𝑖𝑛2) and
we don’t need 𝑉6 to get the correct value for the median node
which will be the larger of 𝑚𝑖𝑛1, 𝑚𝑖𝑛2.

If the minimizer chooses the value of the right subtree, the
value at 𝑉6 is unnecessary again since the minimizer never
chose its subtree.
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Part c (pruning 𝑉11, 𝑉12 ):
Assume the highest maximizer node has a current value
𝑚𝑎𝑥1 ≥ 𝑍 set by the left subtree and the three minimizers
on this right subtree have value 𝑚𝑖𝑛1, 𝑚𝑖𝑛2, 𝑚𝑖𝑛3.

In this part, if 𝑚𝑖𝑛1 ≤ max (𝑉9, 𝑉10) ≤ 𝑍, we do not have
to explore 𝑉11, 𝑉12. Once again, the reasoning is subtle, but
we can now realize if either 𝑚𝑖𝑛2 ≤ 𝑍 or 𝑚𝑖𝑛3 ≤ 𝑍 then the
value of the right median node is for sure ≤ 𝑍 and is useless.

Only if both 𝑚𝑖𝑛2, 𝑚𝑖𝑛3 ≥ 𝑍 will the whole right subtree have
an effect on the highest maximizer, but in this case the exact
value of 𝑚𝑖𝑛1 is not needed, just the information that it is ≤ 𝑍.
Clearly in both cases, 𝑉11, 𝑉12 are not needed since an exact
value of 𝑚𝑖𝑛1 is not needed.

We will also take the time to note that if 𝑉9 ≥ 𝑍 we do have
to continue the exploring as 𝑉10 could be even greater and the
final value of the top maximizer, so 𝑉10 can’t really be pruned.

Part d (pruning 𝑉14, 𝑉15, 𝑉16 ):
Continuing from part c, if we find that𝑚𝑖𝑛1 ≤ 𝑍 and𝑚𝑖𝑛2 ≤ 𝑍
we can stop.

We can realize this as soon we explore 𝑉13. Once we figure
this out, we know that our median node’s value must be one of
these two values, and neither will replace 𝑍 so we can stop.
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