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Q1. Probability
Use the probability table to calculate the following values:

𝑋1 𝑋2 𝑋3 𝑃 (𝑋1, 𝑋2, 𝑋3)
0 0 0 0.05
1 0 0 0.1
0 1 0 0.4
1 1 0 0.1
0 0 1 0.1
1 0 1 0.05
0 1 1 0.2
1 1 1 0.0

1. 𝑃 (𝑋1 = 1, 𝑋2 = 0) = 0.15

2. 𝑃 (𝑋3 = 0) = 0.65

3. 𝑃 (𝑋2 = 1|𝑋3 = 1) = 0.2/0.35

4. 𝑃 (𝑋1 = 0|𝑋2 = 1, 𝑋3 = 1) = 1

5. 𝑃 (𝑋1 = 0, 𝑋2 = 1|𝑋3 = 1) = 0.2/0.35
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Q2. Bayes Nets: Green Party President
In a parallel universe the Green Party is running for presidency. Whether a Green Party President is elected (G) will have
an effect on whether marijuana is legalized (M), which then influences whether the budget is balanced (B), and whether class
attendance increases (C). Armed with the power of probability, the analysts model the situation with the Bayes Net below.

(G)reen Party President Elected

(M)arijuana Legalized

(B)alanced Budget (C)lass Attendance Increases

+g -g
P(G) 0.1 0.9

P(+m| G) P(-m| G)
+g 0.667 0.333
-g 0.25 0.75

P(+b | M) P(-b | M)
+m 0.4 0.6
-m 0.2 0.8

P(+c | M) P(-c | M)
+m 0.25 0.75
-m 0.5 0.5

1. The full joint distribution is given below. Fill in the missing values.

𝐺 𝑀 𝐵 𝐶 𝑃 (𝐺,𝑀,𝐵, 𝐶)
+ + + + 1/150
+ + + - 1/50
+ + - + 1/100
+ + - - 3/100
+ - + + 1/300
+ - + - 1/300
+ - - + 1/75
+ - - - 1/75

𝐺 𝑀 𝐵 𝐶 𝑃 (𝐺,𝑀,𝐵, 𝐶)
- + + + 9/400
- + + - 27/400
- + - + 27/800
- + - - 81/800
- - + + 27/400
- - + - 27/400
- - - + 27/100
- - - - 27/100

2. Now, add a node 𝑆 to the Bayes net that reflects the possibility that a new scientific study could influence the probability
that marijuana is legalized. Assume that the study does not directly influence B or C. Draw the new Bayes net below.
Which CPT or CPT’s need to be modified?

(G)reen Party President Elected

(M)arijuana Legalized

(B)alanced Budget (C)lass Attendance Increases

(S)tudy results

𝑃 (𝑀|𝐺) will become 𝑃 (𝑀|𝐺,𝑆), and will contain 8 entries instead of 4.
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Q3. Policy Evaluation [RL Review]
In this question, you will be working in an MDP with states 𝑆, actions 𝐴, discount factor 𝛾 , transition function 𝑇 , and reward
function 𝑅.

We have some fixed policy 𝜋 ∶ 𝑆 → 𝐴, which returns an action 𝑎 = 𝜋(𝑠) for each state 𝑠 ∈ 𝑆. We want to learn the 𝑄 function
𝑄𝜋(𝑠, 𝑎) for this policy: the expected discounted reward from taking action 𝑎 in state 𝑠 and then continuing to act according
to 𝜋: 𝑄𝜋(𝑠, 𝑎) =

∑

𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑄𝜋(𝑠′, 𝜋(𝑠′)]. The policy 𝜋 will not change while running any of the algorithms
below.

(a) Can we guarantee anything about how the values 𝑄𝜋 compare to the values 𝑄∗ for an optimal policy 𝜋∗?

 𝑄𝜋(𝑠, 𝑎) ≤ 𝑄∗(𝑠, 𝑎) for all 𝑠, 𝑎
# 𝑄𝜋(𝑠, 𝑎) = 𝑄∗(𝑠, 𝑎) for all 𝑠, 𝑎
# 𝑄𝜋(𝑠, 𝑎) ≥ 𝑄∗(𝑠, 𝑎) for all 𝑠, 𝑎
# None of the above are guaranteed

(b) Suppose 𝑇 and 𝑅 are unknown. You will develop sample-based methods to estimate 𝑄𝜋 . You obtain a series of samples
(𝑠1, 𝑎1, 𝑟1), (𝑠2, 𝑎2, 𝑟2),…(𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 ) from acting according to this policy (where 𝑎𝑡 = 𝜋(𝑠𝑡), for all 𝑡).

(i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

𝑉 (𝑠𝑡) ← (1 − 𝛼)𝑉 (𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1))

which approximates the expected discounted reward 𝑉 𝜋(𝑠) for following policy 𝜋 from each state 𝑠, for a learning
rate 𝛼.
Fill in the blank below to create a similar update equation which will approximate 𝑄𝜋 using the samples.
You can use any of the terms 𝑄, 𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡, 𝑎𝑡+1, 𝑟𝑡, 𝑟𝑡+1, 𝛾, 𝛼, 𝜋 in your equation, as well as

∑

and max with any
index variables (i.e. you could write max𝑎, or

∑

𝑎 and then use 𝑎 somewhere else), but no other terms.

𝑄(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
[

𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)
]

(ii) Now, we will approximate 𝑄𝜋 using a linear function: 𝑄(𝑠, 𝑎) = 𝐰⊤𝐟 (𝑠, 𝑎) for a weight vector 𝐰 and feature function
𝐟 (𝑠, 𝑎).
To decouple this part from the previous part, use 𝑄𝑠𝑎𝑚𝑝 for the value in the blank in part (i) (i.e. 𝑄(𝑠𝑡, 𝑎𝑡) ←
(1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼𝑄𝑠𝑎𝑚𝑝).
Which of the following is the correct sample-based update for 𝐰?
# 𝐰 ← 𝐰 + 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]
# 𝐰 ← 𝐰 − 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]
# 𝐰 ← 𝐰 + 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐟 (𝑠𝑡, 𝑎𝑡)
 𝐰 ← 𝐰 − 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐟 (𝑠𝑡, 𝑎𝑡)
# 𝐰 ← 𝐰 + 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐰
# 𝐰 ← 𝐰 − 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐰

(iii) The algorithms in the previous parts (part i and ii) are:
□ model-based ■ model-free
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