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Q1. Bayes Nets: Variable Elimination

A

C

DB

E
𝑃 (𝐴)

+𝑎 0.25
−𝑎 0.75

𝑃 (𝐵|𝐴) +𝑏 −𝑏
+𝑎 0.5 0.5
−𝑎 0.25 0.75

𝑃 (𝐶|𝐴) +𝑐 −𝑐
+𝑎 0.2 0.8
−𝑎 0.6 0.4

𝑃 (𝐷|𝐵) +𝑑 −𝑑
+𝑏 0.6 0.4
−𝑏 0.8 0.2

𝑃 (𝐸|𝐵) +𝑒 −𝑒
+𝑏 0.25 0.75
−𝑏 0.1 0.9

(a) Using the Bayes’ Net and conditional probability tables above, calculate the following quantities:
(i) 𝑃 (+𝑏| + 𝑎) = 0.5

(ii) 𝑃 (+𝑎,+𝑏) =
0.25 ∗ 0.5 = 0.125 = 1

8
(iii) 𝑃 (+𝑎| + 𝑏) =

0.25∗0.5
0.25∗0.5+0.25∗0.75 = 0.4 = 2

5

(b) Now we are going to consider variable elimination in the Bayes’ Net above.
(i) Assume we have the evidence +𝑐 and wish to calculate 𝑃 (𝐸 | +c). What factors do we have initially?

𝑃 (𝐴), 𝑃 (𝐵 | 𝐴), 𝑃 (+c | 𝐴), 𝑃 (𝐷 | 𝐵), 𝑃 (𝐸 | 𝐵)
(ii) If we eliminate variable B, we create a new factor. What probability does that factor correspond to?

𝑃 (𝐷,𝐸 | 𝐴)
(iii) What is the equation to calculate the factor we create when eliminating variable B?

𝑓 (𝐴,𝐷,𝐸) =
∑

𝐵 𝑃 (𝐵 | 𝐴) ∗ 𝑃 (𝐷 | 𝐵) ∗ 𝑃 (𝐸 | 𝐵)
(iv) After eliminating variable B, what are the new set of factors? As in (ii), write the probabilities that the factors

represent. For each factor, also provide its size.
Factor Size after elimination
𝑃 (𝐴) 2

𝑃 (+c | 𝐴) 2

𝑃 (𝐷,𝐸 | 𝐴) 23

(v) Now assume we have the evidence −𝑐 and are trying to calculate 𝑃 (𝐴| − 𝑐). What is the most efficient elimination
ordering? If more than one ordering is most efficient, provide any one of them. E, D, B or D, E, B

(vi) Once we have run variable elimination and have 𝑓 (𝐴,−𝑐) how do we calculate 𝑃 (+𝑎 | − 𝑐)? 𝑓 (+𝑎,−𝑐)
𝑓 (+𝑎,−𝑐)+𝑓 (−𝑎,−𝑐) or

note that elimination is unnecessary - just use Bayes’ rule
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Q2. Sampling in Bayes Nets
We would like to analyze people’s ice cream eating habits on sunny and rainy days. Suppose we consider the weather, along
with a person’s ice-cream eating, over the span of two days. We’ll have four random variables: 𝑊1 and 𝑊2 stand for the weather
on days 1 and 2, which can either be rainy R or sunny S, and the variables 𝐼1 and 𝐼2 represent whether or not the person ate ice
cream on days 1 and 2, and take values T (for truly eating ice cream) or F. We can model this as the following Bayes Net with
these probabilities.

𝑊1 𝑃 (𝑊1)
𝑆 0.6
𝑅 0.4

𝑊1 𝑊2 𝑃 (𝑊2|𝑊1)
𝑆 𝑆 0.7
𝑆 𝑅 0.3
𝑅 𝑆 0.5
𝑅 𝑅 0.5

𝑊 𝐼 𝑃 (𝐼|𝑊 )
𝑆 𝑇 0.9
𝑆 𝐹 0.1
𝑅 𝑇 0.2
𝑅 𝐹 0.8

Suppose we produce the following samples of (𝑊1, 𝐼1,𝑊2, 𝐼2) from the ice-cream model:

����R, F, R, F ����R, F, R, F ����S, F, S, T ����S, T, S, T S, T, R, F
����R, F, R, T ����S, T, S, T ����S, T, S, T S, T, R, F ����R, F, S, T

(a) Using these samples, what is our estimate of 𝑃 (𝑊2 = R)? 5∕10 = 0.5

(b) Cross off samples above which are rejected by rejection sampling if we’re trying to estimate 𝑃 (𝑊2|𝐼1 = T, 𝐼2 = F)

Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting. Assume we generate the
following six samples for (𝑊1, 𝐼1,𝑊2, 𝐼2), given the evidence 𝐼1 = T and 𝐼2 = F:

(S, T, R, F) (R, T, R, F) (S, T, R, F) (S, T, S, F) (S, T, S, F) (R, T, S, F)

(c) Calculate the weight of each sample.

In this case, the evidence is 𝐼1 = T, 𝐼2 = F.
The weight of the first sample is thus 𝑤 = Pr(𝐼1 = T|𝑊1 = S) ⋅ Pr(𝐼2 = F|𝑊2 = R) = 0.9 ⋅ 0.8 = 0.72
Similarly, we can calculate the weights of the other samples as follows:

(𝑊1, 𝐼1,𝑊2, 𝐼2) 𝑤
S, T, R, F 0.72
R, T, R, F 0.16
S, T, R, F 0.72
S, T, S, F 0.09
S, T, S, F 0.09
R, T, S, F 0.02

(d) Estimate 𝑃 (𝑊2|𝐼1 = T, 𝐼2 = F) using our likelihood weights from the previous part.
To compute the probability estimate, we normalize the weights and find

𝑃 (𝑊2 = R|𝐼1 = T, 𝐼2 = F) = 0.72 + 0.16 + 0.72
0.72 + 0.16 + 0.72 + 0.09 + 0.09 + 0.02

= 0.889

𝑃 (𝑊2 = S|𝐼1 = T, 𝐼2 = F) = 1 − 0.889 = 0.111.
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Q3. Bayes Nets: Inference
Consider the following Bayes Net, where we have observed that 𝐷 = +𝑑.

𝑃 (𝐴)
+𝑎 0.5
−𝑎 0.5

𝑃 (𝐵|𝐴)
+𝑎 +𝑏 0.5
+𝑎 −𝑏 0.5
−𝑎 +𝑏 0.2
−𝑎 −𝑏 0.8

𝑃 (𝐶|𝐴,𝐵)
+𝑎 +𝑏 +𝑐 0.8
+𝑎 +𝑏 −𝑐 0.2
+𝑎 −𝑏 +𝑐 0.6
+𝑎 −𝑏 −𝑐 0.4
−𝑎 +𝑏 +𝑐 0.2
−𝑎 +𝑏 −𝑐 0.8
−𝑎 −𝑏 +𝑐 0.1
−𝑎 −𝑏 −𝑐 0.9

𝑃 (𝐷|𝐶)
+𝑐 +𝑑 0.4
+𝑐 −𝑑 0.6
−𝑐 +𝑑 0.2
−𝑐 −𝑑 0.8

(a) Below is a list of samples that were collected using prior
sampling. Mark the samples that would be rejected by
rejection sampling.

■ +𝑎 −𝑏 +𝑐 −𝑑
□ +𝑎 −𝑏 +𝑐 +𝑑
■ −𝑎 +𝑏 −𝑐 −𝑑
□ +𝑎 +𝑏 +𝑐 +𝑑

(b) To decouple from the previous part, you now receive a
new set of samples shown below:

+𝑎 +𝑏 +𝑐 +𝑑
−𝑎 −𝑏 −𝑐 +𝑑
+𝑎 +𝑏 +𝑐 +𝑑
+𝑎 −𝑏 −𝑐 +𝑑
−𝑎 −𝑏 −𝑐 +𝑑

Estimate the probability 𝑃 (+𝑎|+𝑑) if these new samples
were collected using...

(i) ... rejection sampling: 3
5

(ii) ... likelihood weighting: 0.4 + 0.4 + 0.2
0.4 + 0.2 + 0.4 + 0.2 + 0.2

= 10
14

= 5
7

(c) Instead of sampling, we now wish to use variable elimination to calculate 𝑃 (+𝑎| + 𝑑). We start with the factorized
representation of the joint probability:

𝑃 (𝐴,𝐵, 𝐶,+𝑑) = 𝑃 (𝐴)𝑃 (𝐵|𝐴)𝑃 (𝐶|𝐴,𝐵)𝑃 (+𝑑|𝐶)
(i) We begin by eliminating the variable 𝐵, which creates a new factor 𝑓1. Complete the expression for the factor 𝑓1 in

terms of other factors.
𝑓1( 𝐴,𝐶 ) =

∑

𝑏
𝑃 (𝑏|𝐴)𝑃 (𝐶|𝐴, 𝑏)

(ii) After eliminating 𝐵 to create a factor 𝑓1, we next eliminate 𝐶 to create a factor 𝑓2. What are the remaining factors
after both 𝐵 and 𝐶 are eliminated?

■ 𝑝(𝐴)
□ 𝑝(𝐵|𝐴) □ 𝑝(𝐶|𝐴,𝐵) □ 𝑝(+𝑑|𝐶) □ 𝑓1 ■ 𝑓2

(iii) After eliminating both 𝐵 and 𝐶 , we are now ready to calculate 𝑃 (+𝑎| + 𝑑). Write an expression for 𝑃 (+𝑎| + 𝑑) in
terms of the remaining factors.

𝑃 (+𝑎| + 𝑑) =
𝑃 (+𝑎)𝑓2(+𝑎,+𝑑)
∑

𝑎 𝑃 (𝑎)𝑓2(𝑎,+𝑑)
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