
CS 188
Fall 2024 Regular Discussion 11 Solutions

1 Optimization
We would like to classify some data. We have N samples, where each sample consists of a feature vector
x = [x1, · · · , xk]

T and a label y ∈ {0, 1}.
Logistic regression produces predictions as follows:

P (Y = 1 | X) = h(x) = s

(∑
i

wixi

)
=

1

1 + exp(−(
∑

i wixi))

s(γ) =
1

1 + exp(−γ)

where s(γ) is the logistic function, expx = ex, and w = [w1, · · · , wk]
T are the learned weights.

Let’s find the weights wj for logistic regression using stochastic gradient descent. We would like to minimize
the following loss function (called the cross-entropy loss) for each sample:

L = −[y lnh(x) + (1− y) ln(1− h(x))]

(a) Show that s′(γ) = s(γ)(1− s(γ))
s(γ) = (1 + exp(−γ))−1

s′(γ) = −(1 + exp(−γ))−2(− exp(−γ))

s′(γ) =
1

1 + exp(−γ)
· exp(−γ)
1 + exp(−γ)

s′(γ) = s(γ)(1− s(γ))

(b) Find dL
dwj

. Use the fact from the previous part.

Use chain rule:
dL

dwj
= −

[
y

h(x)
s′(
∑
i

wixi)xj −
1− y

1− h(x)
s′(
∑
i

wixi)xj

]
Use fact from previous part:

dL

dwj
= −

[
y

h(x)
h(x)(1− h(x))xj −

1− y

1− h(x)
h(x)(1− h(x))xj

]
Simplify:

dL

dwj
= − [y(1− h(x))xj − (1− y)h(x)xj]

= −xj [y − yh(x)− h(x) + yh(x)]

= −xj(y − h(x))

1

(c) Now, find a simple expression for ∇wL = [dL
dw1

, dL
dw2

, ..., dL
dwk

]T

∇wL = [−x1(y − h(x)),−x2(y − h(x)), ...,−xk(y − h(x))]T

= −[x1, x2, ...xk]
T (y − h(x))

= −x(y − h(x))

(d) Write the stochastic gradient descent update for w. Our step size is η.

w← w+ ηx(y − h(x))

2

2 Neural Nets
Consider the following computation graph for a simple neural network for binary classification. Here x is a
single real-valued input feature with an associated class y∗ (0 or 1). There are two weight parameters w1 and
w2, and non-linearity functions g1 and g2 (to be defined later, below). The network will output a value a2
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, below), to compare the prediction a2 with the true class y∗.

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and a2 in
terms of the node’s input values:

z1 = x ∗ w1

a1 = g1(z1)

z2 = a1 ∗ w2

a2 = g2(z2)

2. Compute the loss Loss(a2, y
∗) in terms of the input x, weights wi, and activation functions gi:

Recursively substituting the values computed above, we have:

Loss(a2, y
∗) = Loss(g2(w2 ∗ g1(w1 ∗ x)), y∗)

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive ∂Loss
∂w2

.
Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be
helpful; you may use any of those variables.)

∂Loss

∂w2
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂w2

3

4. Suppose the loss function is quadratic, Loss(a2, y
∗) = 1

2 (a2−y
∗)2, and g1 and g2 are both sigmoid functions

g(z) = 1
1+e−z (note: it’s typically better to use a different type of loss, cross-entropy, for classification

problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that ∂g(z)
∂z = g(z)(1− g(z)) for the sigmoid function, write

∂Loss
∂w2

in terms of the values from the forward pass, y∗, a1, and a2:

First we’ll compute the partial derivatives at each node:

∂Loss

∂a2
= (a2 − y∗)

∂a2
∂z2

=
∂g2(z2)

∂z2
= g2(z2)(1− g2(z2)) = a2(1− a2)

∂z2
∂w2

= a1

Now we can plug into the chain rule from part 3:

∂Loss

∂w2
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂w2

= (a2 − y∗) ∗ a2(1− a2) ∗ a1

5. Now use the chain rule to derive ∂Loss
∂w1

as a product of partial derivatives at each node used in the chain
rule:

∂Loss

∂w1
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

6. Finally, write ∂Loss
∂w1

in terms of x, y∗, wi, ai, zi: The partial derivatives at each node (in addition to the
ones we computed in Part 4) are:

∂z2
∂a1

= w2

∂a1
∂z1

=
∂g1(z1)

∂z1
= g1(z1)(1− g1(z1)) = a1(1− a1)

∂z1
∂a1

= x

Plugging into the chain rule from Part 5 gives:

∂Loss

∂w1
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

= (a2 − y∗) ∗ a2(1− a2) ∗ w2 ∗ a1(1− a1) ∗ x

7. What is the gradient descent update for w1 with step-size α in terms of the values computed above?

w1 ← w1 − α(a2 − y∗) ∗ a2(1− a2) ∗ w2 ∗ a1(1− a1) ∗ x

4

