
Announcements

Á Homework 0: Math self-diagnostic due tonight/Tuesday 9/3 at 11:59pm

Á Strongly encouraged, optional, but important to check your preparedness for second half

Á Project 0: Python Tutorial due tomorrow/Wednesday 9/4 at 5pm

Á Strongly encouraged, optional, get to know project/submission system)

Á Homework 1: Search
Á Going out this week, due next week Tuesday 9/10 11:59pm

Á Two parts: electronic + written

Á Project 1: Search
Á Going out this week, due next week Friday 9/13 5pm

Á Longer than most, and best way to test your programming preparedness

Á Office hours
Á Starting this week, see course calendar on website

Á Sections
Á Starting next week

CS 188: Artificial Intelligence

Search

Instructors: Pieter Abbeel & Igor Mordatch

University of California, Berkeley
[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu)]

Today

ÁAgents that Plan Ahead

ÁSearch Problems

ÁUninformed Search Methods

ÁDepth-First Search

ÁBreadth-First Search

ÁUniform-Cost Search

Agents that Plan

Reflex Agents

ÁReflex agents:
ÁChoose action based on current percept (and

maybe memory)

Áaŀȅ ƘŀǾŜ ƳŜƳƻǊȅ ƻǊ ŀ ƳƻŘŜƭ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ
current state

ÁDo not consider the future consequences of
their actions

ÁConsider how the world IS

ÁCan a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Demo Reflex: Optimal

Demo Reflex: Suboptimal / Stuck

Planning Agents

ÁPlanning agents:
Á!ǎƪ άǿƘŀǘ ƛŦέ

ÁDecisions based on (hypothesized)
consequences of actions

ÁMust have a model of how the world evolves in
response to actions

ÁMust formulate a goal (test)

ÁConsider how the world WOULD BE

ÁtƭŀƴƴƛƴƎ ŀƎŜƴǘǎΩ ǇǊƻǇŜǊǘƛŜǎΥ
ÁCompleteness (or not)

ÁOptimality (or not)

ÁPlanning vs. replanning [Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

ÁA searchproblemconsists of:

ÁA state space

ÁA successor function
(with actions, costs)

ÁA start state and a goal test

ÁA solutionis a sequence of actions (a plan) which
transforms the start state to a goal state

άbέΣ мΦл

ά9έΣ мΦл

Search Problems Are Models

Example: Traveling in Romania

ÁState space:
ÁCities

ÁSuccessor function:
ÁRoads: Go to adjacent city with

cost = distance

ÁStart state:
ÁArad

ÁGoal test:
Á Is state == Bucharest?

ÁSolution?

²ƘŀǘΩǎ ƛƴ ŀ {ǘŀǘŜ {ǇŀŎŜΚ

ÁProblem: Pathing
ÁStates: (x,y) location

ÁActions: NESW

ÁSuccessor: update location
only

ÁGoal test: is (x,y)=END

ÁProblem: Eat-All-Dots
ÁStates: {(x,y), dot booleans}

ÁActions: NESW

ÁSuccessor: update location
and possibly a dot boolean

ÁGoal test: dots all false

The world stateincludes every last detail of the environment

A search statekeeps only the details needed for planning (abstraction)

State Space Sizes?

ÁWorld state:
ÁAgent positions: 120

ÁFood presence: 30 booleans

ÁGhost positions: 12

ÁAgent facing: NESW

ÁHow many
ÁWorld states?

120x(230)x(122)x4

ÁStates for pathing?

120

ÁStates for eat-all-dots?

120x(230)

Quiz: Safe Passage

ÁProblem: eat all dots while keeping the ghosts perma-scared

ÁWhat does the state space have to specify?

Á(agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

ÁState space graph: A mathematical
representation of a search problem
ÁNodes are (abstracted) world configurations

ÁArcs represent successors (action results)

Á The goal test is a set of goal nodes (maybe only one)

Á In a state space graph, each state occurs only
once!

ÁWe can rarely build this full graph in memory
όƛǘΩǎ ǘƻƻ ōƛƎύΣ ōǳǘ ƛǘΩǎ ŀ ǳǎŜŦǳƭ ƛŘŜŀ

State Space Graphs

ÁState space graph: A mathematical
representation of a search problem
ÁNodes are (abstracted) world configurations

ÁArcs represent successors (action results)

Á The goal test is a set of goal nodes (maybe only one)

Á In a state space graph, each state occurs only
once!

ÁWe can rarely build this full graph in memory
όƛǘΩǎ ǘƻƻ ōƛƎύΣ ōǳǘ ƛǘΩǎ ŀ ǳǎŜŦǳƭ ƛŘŜŀ

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

ÁA search tree:
Á! άǿƘŀǘ ƛŦέ ǘǊŜŜ ƻŦ Ǉƭŀƴǎ ŀƴŘ ǘƘŜƛǊ ƻǳǘŎƻƳŜǎ

ÁThe start state is the root node

ÁChildren correspond to successors

ÁNodes show states, but correspond to PLANS that achieve those states

ÁFor most problems, we can never actually build the whole tree

ά9έΣ мΦлάbέΣ мΦл

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand ςand
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

Χ Χ

Tree Search

Search Example: Romania

Searching with a Search Tree

ÁSearch:
ÁExpand out potential plans (tree nodes)

ÁMaintain a fringe of partial plans under consideration

ÁTry to expand as few tree nodes as possible

General Tree Search

ÁImportant ideas:
ÁFringe
ÁExpansion
ÁExploration strategy

ÁMain question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p
q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s Ą d
s Ą e
s Ą p
s Ą d Ą b
s Ą d Ą c
s Ą d Ą e
s Ą d Ą e Ą h
s Ą d Ą e Ą r
s Ą d Ą e Ą r Ą f
s Ą d Ą e Ą r Ą f Ą c
s Ą d Ą e Ą r Ą f ĄG

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

ÁComplete: Guaranteed to find a solution if one exists?

ÁOptimal: Guaranteed to find the least cost path?

ÁTime complexity?

ÁSpace complexity?

ÁCartoon of search tree:
Áb is the branching factor

Ám is the maximum depth

Ásolutions at various depths

ÁNumber of nodes in entire tree?
Á1 + b + b2Ҍ ΧΦ bm = O(bm)

é
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

é
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

ÁWhat nodes does DFS expand?
ÁSome left prefix of the tree.

ÁCould process the whole tree!

Á If m is finite, takes time O(bm)

ÁHow much space does the fringe take?
ÁOnly has siblings on path to root, so O(bm)

Á Is it complete?
Ám could be infinite, so only if we prevent

cycles (more later)

Á Is it optimal?
ÁbƻΣ ƛǘ ŦƛƴŘǎ ǘƘŜ άƭŜŦǘƳƻǎǘέ ǎƻƭǳǘƛƻƴΣ

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

ÁWhat nodes does BFS expand?
ÁProcesses all nodes above shallowest solution

ÁLet depth of shallowest solution be s

ÁSearch takes time O(bs)

ÁHow much space does the fringe take?
ÁHas roughly the last tier, so O(bs)

Á Is it complete?
Ás must be finite if a solution exists, so yes!

Á Is it optimal?
ÁOnly if costs are all 1 (more on costs later)

é
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vsBFS

Quiz: DFS vsBFS

ÁWhen will BFS outperform DFS?

ÁWhen will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

é
b

ÁLŘŜŀΥ ƎŜǘ 5C{Ωǎ ǎǇŀŎŜ ŀŘǾŀƴǘŀƎŜ ǿƛǘƘ .C{Ωǎ
time / shallow-solution advantages

Áwǳƴ ŀ 5C{ ǿƛǘƘ ŘŜǇǘƘ ƭƛƳƛǘ мΦ LŦ ƴƻ ǎƻƭǳǘƛƻƴΧ

Áwǳƴ ŀ 5C{ ǿƛǘƘ ŘŜǇǘƘ ƭƛƳƛǘ нΦ LŦ ƴƻ ǎƻƭǳǘƛƻƴΧ

Áwǳƴ ŀ 5C{ ǿƛǘƘ ŘŜǇǘƘ ƭƛƳƛǘ оΦ ΧΦΦ

ÁLǎƴΩǘ ǘƘŀǘ ǿŀǎǘŜŦǳƭƭȅ ǊŜŘǳƴŘŀƴǘΚ

ÁGenerally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

