
Announcements

 Homework 0: Math self-diagnostic due tonight/Tuesday 9/3 at 11:59pm

 Strongly encouraged, optional, but important to check your preparedness for second half

 Project 0: Python Tutorial due tomorrow/Wednesday 9/4 at 5pm

 Strongly encouraged, optional, get to know project/submission system)

 Homework 1: Search
 Going out this week, due next week Tuesday 9/10 11:59pm

 Two parts: electronic + written

 Project 1: Search
 Going out this week, due next week Friday 9/13 5pm

 Longer than most, and best way to test your programming preparedness

 Office hours
 Starting this week, see course calendar on website

 Sections
 Starting next week

CS 188: Artificial Intelligence

Search

Instructors: Pieter Abbeel & Igor Mordatch

University of California, Berkeley
[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu)]

Today

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods

 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

Agents that Plan

Reflex Agents

 Reflex agents:
 Choose action based on current percept (and

maybe memory)

 May have memory or a model of the world’s
current state

 Do not consider the future consequences of
their actions

 Consider how the world IS

 Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Demo Reflex: Optimal

Demo Reflex: Suboptimal / Stuck

Planning Agents

 Planning agents:
 Ask “what if”

 Decisions based on (hypothesized)
consequences of actions

 Must have a model of how the world evolves in
response to actions

 Must formulate a goal (test)

 Consider how the world WOULD BE

 Planning agents’ properties:
 Completeness (or not)

 Optimality (or not)

 Planning vs. replanning [Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

 A search problem consists of:

 A state space

 A successor function
(with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

 State space:
 Cities

 Successor function:
 Roads: Go to adjacent city with

cost = distance

 Start state:
 Arad

 Goal test:
 Is state == Bucharest?

 Solution?

What’s in a State Space?

 Problem: Pathing
 States: (x,y) location

 Actions: NESW

 Successor: update location
only

 Goal test: is (x,y)=END

 Problem: Eat-All-Dots
 States: {(x,y), dot booleans}

 Actions: NESW

 Successor: update location
and possibly a dot boolean

 Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

 World state:
 Agent positions: 120

 Food presence: 30 booleans

 Ghost positions: 12

 Agent facing: NESW

 How many
 World states?

120x(230)x(122)x4

 States for pathing?

120

 States for eat-all-dots?

120x(230)

Quiz: Safe Passage

 Problem: eat all dots while keeping the ghosts perma-scared

 What does the state space have to specify?

 (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

 State space graph: A mathematical
representation of a search problem
 Nodes are (abstracted) world configurations

 Arcs represent successors (action results)

 The goal test is a set of goal nodes (maybe only one)

 In a state space graph, each state occurs only
once!

 We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

 State space graph: A mathematical
representation of a search problem
 Nodes are (abstracted) world configurations

 Arcs represent successors (action results)

 The goal test is a set of goal nodes (maybe only one)

 In a state space graph, each state occurs only
once!

 We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

 A search tree:
 A “what if” tree of plans and their outcomes

 The start state is the root node

 Children correspond to successors

 Nodes show states, but correspond to PLANS that achieve those states

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

 Search:
 Expand out potential plans (tree nodes)

 Maintain a fringe of partial plans under consideration

 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p
q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s d
s e
s p
s d b
s d c
s d e
s d e h
s d e r
s d e r f
s d e r f c
s d e r f G

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

 Complete: Guaranteed to find a solution if one exists?

 Optimal: Guaranteed to find the least cost path?

 Time complexity?

 Space complexity?

 Cartoon of search tree:
 b is the branching factor

 m is the maximum depth

 solutions at various depths

 Number of nodes in entire tree?
 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

 What nodes does DFS expand?
 Some left prefix of the tree.

 Could process the whole tree!

 If m is finite, takes time O(bm)

 How much space does the fringe take?
 Only has siblings on path to root, so O(bm)

 Is it complete?
 m could be infinite, so only if we prevent

cycles (more later)

 Is it optimal?
 No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

 What nodes does BFS expand?
 Processes all nodes above shallowest solution

 Let depth of shallowest solution be s

 Search takes time O(bs)

 How much space does the fringe take?
 Has roughly the last tier, so O(bs)

 Is it complete?
 s must be finite if a solution exists, so yes!

 Is it optimal?
 Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

 When will BFS outperform DFS?

 When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

…
b

 Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

 Run a DFS with depth limit 1. If no solution…

 Run a DFS with depth limit 2. If no solution…

 Run a DFS with depth limit 3. …..

 Isn’t that wastefully redundant?

 Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

 What nodes does UCS expand?
 Processes all nodes with cost less than cheapest solution!

 If that solution costs C* and arcs cost at least , then the
“effective depth” is roughly C*/

 Takes time O(bC*/) (exponential in effective depth)

 How much space does the fringe take?
 Has roughly the last tier, so O(bC*/)

 Is it complete?
 Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

 Is it optimal?
 Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c 3

c 2

c 1

Uniform Cost Issues

 Remember: UCS explores increasing cost
contours

 The good: UCS is complete and optimal!

 The bad:
 Explores options in every “direction”
 No information about goal location

 We’ll fix that soon!

Start Goal

…

c 3

c 2

c 1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

 All these search algorithms are the
same except for fringe strategies

 Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

 Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

 Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

Search and Models

 Search operates over
models of the world

 The agent doesn’t
actually try all the plans
out in the real world!

 Planning is all “in
simulation”

 Your search is only as
good as your models…

