
Announcements

 Homework 0: Math self-diagnostic due tonight/Tuesday 9/3 at 11:59pm

 Strongly encouraged, optional, but important to check your preparedness for second half

 Project 0: Python Tutorial due tomorrow/Wednesday 9/4 at 5pm

 Strongly encouraged, optional, get to know project/submission system)

 Homework 1: Search
 Going out this week, due next week Tuesday 9/10 11:59pm

 Two parts: electronic + written

 Project 1: Search
 Going out this week, due next week Friday 9/13 5pm

 Longer than most, and best way to test your programming preparedness

 Office hours
 Starting this week, see course calendar on website

 Sections
 Starting next week

CS 188: Artificial Intelligence

Search

Instructors: Pieter Abbeel & Igor Mordatch

University of California, Berkeley
[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu)]

Today

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods

 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

Agents that Plan

Reflex Agents

 Reflex agents:
 Choose action based on current percept (and

maybe memory)

 May have memory or a model of the world’s
current state

 Do not consider the future consequences of
their actions

 Consider how the world IS

 Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Demo Reflex: Optimal

Demo Reflex: Suboptimal / Stuck

Planning Agents

 Planning agents:
 Ask “what if”

 Decisions based on (hypothesized)
consequences of actions

 Must have a model of how the world evolves in
response to actions

 Must formulate a goal (test)

 Consider how the world WOULD BE

 Planning agents’ properties:
 Completeness (or not)

 Optimality (or not)

 Planning vs. replanning [Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

 A search problem consists of:

 A state space

 A successor function
(with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

 State space:
 Cities

 Successor function:
 Roads: Go to adjacent city with

cost = distance

 Start state:
 Arad

 Goal test:
 Is state == Bucharest?

 Solution?

What’s in a State Space?

 Problem: Pathing
 States: (x,y) location

 Actions: NESW

 Successor: update location
only

 Goal test: is (x,y)=END

 Problem: Eat-All-Dots
 States: {(x,y), dot booleans}

 Actions: NESW

 Successor: update location
and possibly a dot boolean

 Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

 World state:
 Agent positions: 120

 Food presence: 30 booleans

 Ghost positions: 12

 Agent facing: NESW

 How many
 World states?

120x(230)x(122)x4

 States for pathing?

120

 States for eat-all-dots?

120x(230)

Quiz: Safe Passage

 Problem: eat all dots while keeping the ghosts perma-scared

 What does the state space have to specify?

 (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

 State space graph: A mathematical
representation of a search problem
 Nodes are (abstracted) world configurations

 Arcs represent successors (action results)

 The goal test is a set of goal nodes (maybe only one)

 In a state space graph, each state occurs only
once!

 We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

 State space graph: A mathematical
representation of a search problem
 Nodes are (abstracted) world configurations

 Arcs represent successors (action results)

 The goal test is a set of goal nodes (maybe only one)

 In a state space graph, each state occurs only
once!

 We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

 A search tree:
 A “what if” tree of plans and their outcomes

 The start state is the root node

 Children correspond to successors

 Nodes show states, but correspond to PLANS that achieve those states

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

 Search:
 Expand out potential plans (tree nodes)

 Maintain a fringe of partial plans under consideration

 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p
q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s  d
s  e
s  p
s  d  b
s  d  c
s  d  e
s  d  e  h
s  d  e  r
s  d  e  r  f
s  d  e  r  f  c
s  d  e  r  f  G

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

 Complete: Guaranteed to find a solution if one exists?

 Optimal: Guaranteed to find the least cost path?

 Time complexity?

 Space complexity?

 Cartoon of search tree:
 b is the branching factor

 m is the maximum depth

 solutions at various depths

 Number of nodes in entire tree?
 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

 What nodes does DFS expand?
 Some left prefix of the tree.

 Could process the whole tree!

 If m is finite, takes time O(bm)

 How much space does the fringe take?
 Only has siblings on path to root, so O(bm)

 Is it complete?
 m could be infinite, so only if we prevent

cycles (more later)

 Is it optimal?
 No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

 What nodes does BFS expand?
 Processes all nodes above shallowest solution

 Let depth of shallowest solution be s

 Search takes time O(bs)

 How much space does the fringe take?
 Has roughly the last tier, so O(bs)

 Is it complete?
 s must be finite if a solution exists, so yes!

 Is it optimal?
 Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

 When will BFS outperform DFS?

 When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

…
b

 Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

 Run a DFS with depth limit 1. If no solution…

 Run a DFS with depth limit 2. If no solution…

 Run a DFS with depth limit 3. …..

 Isn’t that wastefully redundant?

 Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

 What nodes does UCS expand?
 Processes all nodes with cost less than cheapest solution!

 If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

 Takes time O(bC*/) (exponential in effective depth)

 How much space does the fringe take?
 Has roughly the last tier, so O(bC*/)

 Is it complete?
 Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

 Is it optimal?
 Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

 Remember: UCS explores increasing cost
contours

 The good: UCS is complete and optimal!

 The bad:
 Explores options in every “direction”
 No information about goal location

 We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

 All these search algorithms are the
same except for fringe strategies

 Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

 Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

 Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

Search and Models

 Search operates over
models of the world

 The agent doesn’t
actually try all the plans
out in the real world!

 Planning is all “in
simulation”

 Your search is only as
good as your models…

