Announcements

= Homework 1: Search

= Has been released! Due Tuesday, Sep 10, at 11:59pm.
= Electronic component: on Gradescope, instant grading, submit as often as you like.

= Written component: exam-style template to be completed (we recommend on
paper) and to be submitted into Gradescope (graded on effort/completion)

" Project 1: Search
= Has been released! Due Friday, Sep 13, at 5pm.
= Start early and ask questions. It’s longer than most!

= Sections
= Starting next week / Monday
= You can go to any

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Igor Mordatch

University of California, Berkeley

Today

" Informed Search
= Heuristics
" Greedy Search
" A* Search

" Graph Search

Recap: Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree (hopefully only fraction of entire search tree!)
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State Space graph with costs as WEightS (slide doesn’t contain entire state space graph)

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

\ Ve N
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

Total cost: 7

The One Queue

= All these search algorithms are the
same except for fringe strategies L\g L_i_\ D‘Lz-j \?},\L@,\ . \F@A
= Conceptually, all fringes are priority |

queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Uninformed Search

Uniform Cost Search

= Strategy: expand lowest path cost

" The good: UCS is complete and optimall!

" The bad:
= Explores options in every “direction” Coal
= No information about goal location

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

——

Heuriski - Tron \

L

=
Heuristi - Tron J

e ——

Example: Heuristic Function

] Vaslui

Timisoara

142

11 Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta [

=l Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Gtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Example: Heuristic Function

] Vaslui

Timisoara

142

11 Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta [

=l Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Gtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

h(X)

Greedy Search

= Expand the node that seems closest...

Arad

Sibiu

329

380 193

366
253 0

= What can go wrong?

] Mehadia
75

Dobreta [J

Greedy Search

= Strategy: expand a node that you think is closest
to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

GE |
st (N YAY

e ————
4--&\
ol
e eeese——

Heuristi = Tron

|

N ——

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

= Aisan optimal goal node

" Bisasuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)
= Claim: n will be expanded before B

1. f(n) is less or equal to f(A) &

f(n) =g(n) + h(n)
f(n) <g(A)
g(A) = f(A)

.

Definition of f-cost

Admissibility of h
h =0 at a goal

/

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)isless than f(B)x

.

9(A) <g(B)
f(A) < f(B)

B is suboptimal
h =0 at a goal

/

Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

Some ancestor n of A is on the

fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)

All ancestors of A expan

3. nexpands before B p
dmL f(n) < f(A) < £(B) J

A expands before B
A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

rEML

A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS / A*

File Edit Navigate Search Project Run Window |elp

I o B0 ~-Q> S 9~ > v v o v T4 [Pyder | &° Team
@ 1search demo emply .
g e 2 search -« contours greedy vs ucs (greedy) g
i & 3 search -- contours greedy vs ucs (ues) c=
@ 4 search -- contours greedy vs ucs (astar)
e‘ S seacch - plan tiny astar
p' 6 search -- plan tiny ucs
& 7 vearch - g id-, bad
& 8 search - groedy good
& 9 sesrch demo moze
@ tesrch demo costs
Run As ’
Run Configurations...
Organize Favorites

s ™ [™ - = ™
[J Cansole - X % xgilFls] a @~"~"0
<terminated> empty.tt
Nurnkber 9f unigue ncdes expandeas: 113 -

g &
Number Of noces sxp

Nurbey of unigque node

.|I|| “‘ ’

Video of Demo Empty Water Shallow/Deep — Guess Algorithm

File Edit Nawvigate Search Project Run Window |jelp

8- @ worvem Y
25 B~0-Q~ 5 9>~ ¥ x 7 »:Y = T e Pydev |- Team
1 search -- plan biny astar =
= =
' 2 seaech - plan tny ucs
C-—
1 &

3 search demo empty

4 search -- contours greedy v ucs (greedy)
S search -« cantours greedy vs ucs (ucs)

§ search -- contours greedy vs ucs (astar)

I search -« greedy bad

8 search - groedy good

9 search demec mase

search ut?u: costs

Run As »

TELI I L)

Run Configurations

Organize Favorites

J Console X %% el @ =0

<terminated> 1 §

To%al cosr: 27

Numbey of nodea expanded: 182

Nunber of unigue nodes expanded: 182

Facman emerges victorious! Score: !
=

(0], 'resulcta': ['Win'], ‘numMovea': [27], ‘scorea’:

11:54 AM

["mumt1)
{ 'numiK11l

i .llll ‘.\ ’

Creating Heuristics

YOU GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

7 2 4 37|1
5 & 1Y) N2 /4|5
8 3 1 S8 6

Start State Actions

—————

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!

3
&

p)
|5
7 |®

Goal State

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What’s wrong with it? ij /t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

A @O
4 N\
Y. ,Y
B T—@— /
Y y
C T
! '
\ /
D —@—

-~

Search Tree

A @
_.-"'l-/‘." \\

~

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p

N |

b/m h r q
| /@ |

r f

- ©@ L

f g ¢ G
N !
G a

C
I
a

Graph Search

Idea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“reached set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check if the state is in the reached set
= |fin reached set, check the associated cost vs. the new cost
= Expand if new cost is lower
= Skip if new cost is higher

Important: store the reached set as a set of (state, cost) pairs, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

State space graph

Importance of tracking state cost in closed set

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} }

G (5+0) G (6+0)

Optimality of A* Graph Search

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
" A* js optimal with admissible heuristics

" Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE|node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function A*-GRAPH-SEARCH(problem, frontier) return a solution or failure

reached <— an empty dict mapping nodes to the cost to each one
frontier<— INSERT((MAKE-NODE(INITIAL-STATE[problem]),0), frontier)
while not IS-EMPTY (frontier) do
node, node.CostToNode < POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
end if
if node.STATE is not in reached or reached[node.STATE] > node.CostToNode then
reached|node.STATE] = node.CostToNode
for each child-node in EXPAND(problem, node) do
frontier +— INSERT((child-node, child-node.COST + CostToNode), frontier)
end for
end if
end while

return failure

Consistency of Heuristics™

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

f(A) = g(A) + h(A) < g(A) + cost(A to C) + h(C) = f(C)

= A* graph search is optimal

Only Single State Expansion Needed with Consistent Heuristic*

= Sketch: consider what A* does with a
consistent heuristic:

* Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

" Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

First Time State Expansion is Cheapest with Consistent Heuristic*

= Consider what A* does:

= Expands nodes in increasing total f value (f-contours)
Reminder: f(n) = g(n) + h(n) = cost to n + heuristic

" Proof idea: the optimal goal(s) have the lowest f value, so
it must get expanded first

There’s a problem with this
argument. What are we assuming
IS true?

First Time State Expansion is Cheapest with Consistent Heuristic*

Proof:

= New possible problem: some n on path to G*
isn’t in qgueue when we need it, because some
worse n’ for the same state dequeued and
expanded first (disaster!)

= Take the highest such nin tree G*

= Let p be the ancestor of n that was on the
queue when n’ was popped

=<

* f(p) < f(n) because of consistency
= f(n) <f(n’) because n’ is suboptimal
= p would have been expanded before n’

= Contradiction!

