
Announcements

 Homework 1: Search
 Has been released! Due Tuesday, Sep 10, at 11:59pm.

 Electronic component: on Gradescope, instant grading, submit as often as you like.

 Written component: exam-style template to be completed (we recommend on
paper) and to be submitted into Gradescope (graded on effort/completion)

 Project 1: Search
 Has been released! Due Friday, Sep 13, at 5pm.

 Start early and ask questions. It’s longer than most!

 Sections
 Starting next week / Monday

 You can go to any

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Igor Mordatch

University of California, Berkeley

Today

 Informed Search

 Heuristics

 Greedy Search

 A* Search

 Graph Search

Recap: Search

Recap: Search

 Search problem:
 States (configurations of the world)

 Actions and costs

 Successor function (world dynamics)

 Start state and goal test

 Search tree:
 Nodes: represent plans for reaching states

 Plans have costs (sum of action costs)

 Search algorithm:
 Systematically builds a search tree (hopefully only fraction of entire search tree!)

 Chooses an ordering of the fringe (unexplored nodes)

 Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights (slide doesn’t contain entire state space graph)

3

4

3

4

2

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

The One Queue

 All these search algorithms are the
same except for fringe strategies

 Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

 Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

 Can even code one implementation
that takes a variable queuing object

Uninformed Search

Uniform Cost Search

 Strategy: expand lowest path cost

 The good: UCS is complete and optimal!

 The bad:
 Explores options in every “direction”
 No information about goal location

Start Goal

…

c 3

c 2

c 1

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

 A heuristic is:
 A function that estimates how close a state is to a goal

 Designed for a particular search problem

 Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

Example: Heuristic Function

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Greedy Search

Example: Heuristic Function

h(x)

Greedy Search

 Expand the node that seems closest…

 What can go wrong?

Greedy Search

 Strategy: expand a node that you think is closest
to a goal state
 Heuristic: estimate of distance to nearest goal for

each state

 A common case:
 Best-first takes you straight to the (wrong) goal

 Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost g(n)

 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

 Should we stop when we enqueue a goal?

 No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

Is A* Optimal?

 What went wrong?

 Actual bad goal cost < estimated good goal cost

 We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

Admissible Heuristics

 A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

 Examples:

 Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

 A is an optimal goal node

 B is a suboptimal goal node

 h is admissible

Claim:

 A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

 Imagine B is on the fringe

 Some ancestor n of A is on the
fringe, too (maybe A!)

 Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

 Imagine B is on the fringe

 Some ancestor n of A is on the
fringe, too (maybe A!)

 Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

 Imagine B is on the fringe

 Some ancestor n of A is on the
fringe, too (maybe A!)

 Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

 All ancestors of A expand before B

 A expands before B

 A* search is optimal

…

Properties of A*

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

 Uniform-cost expands equally in all
“directions”

 A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

A* Applications

A* Applications

 Video games

 Pathing / routing problems

 Resource planning problems

 Robot motion planning

 Language analysis

 Machine translation

 Speech recognition

 …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

 Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

 Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

 Inadmissible heuristics are often useful too

15

366

Example: 8 Puzzle

 What are the states?

 How many states?

 What are the actions?

 How many successors from the start state?

 What should the costs be?

Start State Goal StateActions

8 Puzzle I

 Heuristic: Number of tiles misplaced

 Why is it admissible?

 h(start) =

 This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

 What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

 Total Manhattan distance

 Why is it admissible?

 h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

 How about using the actual cost as a heuristic?

 Would it be admissible?

 Would we save on nodes expanded?

 What’s wrong with it?

 With A*: a trade-off between quality of estimate and work per node

 As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:
 Max of admissible heuristics is admissible

 Trivial heuristics
 Bottom of lattice is the zero heuristic (what

does this give us?)

 Top of lattice is the exact heuristic

Graph Search

 Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

 In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

 Idea: never expand a state twice

 How to implement:

 Tree search + set of expanded states (“reached set”)

 Expand the search tree node-by-node, but…

 Before expanding a node, check if the state is in the reached set
 If in reached set, check the associated cost vs. the new cost

 Expand if new cost is lower

 Skip if new cost is higher

 Important: store the reached set as a set of (state, cost) pairs, not a list

 Can graph search wreck completeness? Why/why not?

 How about optimality?

Importance of tracking state cost in closed set

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Optimality of A* Graph Search

A*: Summary

A*: Summary

 A* uses both backward costs and (estimates of) forward costs

 A* is optimal with admissible heuristics

 Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

Graph Search Pseudo-Code

Consistency of Heuristics*

 Main idea: estimated heuristic costs ≤ actual costs

 Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

 Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

 Consequences of consistency:

 The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

f(A) = g(A) + h(A) ≤ g(A) + cost(A to C) + h(C) = f(C)

 A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Only Single State Expansion Needed with Consistent Heuristic*

 Sketch: consider what A* does with a
consistent heuristic:

 Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

 Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

 Result: A* graph search is optimal

…

f 3

f 2

f 1

First Time State Expansion is Cheapest with Consistent Heuristic*

 Consider what A* does:

 Expands nodes in increasing total f value (f-contours)
Reminder: f(n) = g(n) + h(n) = cost to n + heuristic

 Proof idea: the optimal goal(s) have the lowest f value, so
it must get expanded first

…

f 3

f 2

f 1

There’s a problem with this

argument. What are we assuming

is true?

First Time State Expansion is Cheapest with Consistent Heuristic*

Proof:

 New possible problem: some n on path to G*
isn’t in queue when we need it, because some
worse n’ for the same state dequeued and
expanded first (disaster!)

 Take the highest such n in tree

 Let p be the ancestor of n that was on the
queue when n’ was popped

 f(p) < f(n) because of consistency

 f(n) < f(n’) because n’ is suboptimal

 p would have been expanded before n’

 Contradiction!

