Announcements

- Homework 1: Search
	- Has been released! Due **Tuesday, Sep 10, at 11:59pm**.
		- **Electronic component: on Gradescope, instant grading, submit as often as you like.**
		- Written component: exam-style template to be completed (we recommend on paper) and to be submitted into Gradescope (graded on effort/completion)
- Project 1: Search
	- Has been released! Due **Friday, Sep 13, at 5pm**.
	- Start early and ask questions. It's longer than most!
- **Sections**
	- Starting next week / Monday
	- You can go to any

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Igor Mordatch

University of California, Berkeley

Today

- **Informed Search**
	- **Heuristics**
	- Greedy Search
	- A* Search

Graph Search

Recap: Search

Recap: Search

- Search problem:
	- States (configurations of the world)
	- Actions and costs
	- **Successor function (world dynamics)**
	- Start state and goal test
- Search tree:
	- Nodes: represent plans for reaching states
	- Plans have costs (sum of action costs)
- Search algorithm:
	- Systematically builds a search tree (hopefully only fraction of entire search tree!)
	- Chooses an ordering of the fringe (unexplored nodes)
	- Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n. We show that $f(n) \le (5n+5)/3$, and that $f(n) \ge 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3n/2 - 1 \le g(n) \le 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights (slide doesn't contain entire state space graph)

General Tree Search

The One Queue

- All these search algorithms are the same except for fringe strategies
	- Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
	- Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
	- Can even code one implementation that takes a variable queuing object

Uninformed Search

Uniform Cost Search

Strategy: expand lowest path cost

■ The good: UCS is complete and optimal!

- **The bad:**
	- **Explores options in every "direction"**
	- No information about goal location

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

- A heuristic is:
	- A function that *estimates* how close a state is to a goal
	- **•** Designed for a particular search problem
	- **Examples: Manhattan distance, Euclidean distance for** pathing

Example: Heuristic Function

 $h(x)$

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Example: Heuristic Function

 $h(x)$

Greedy Search

- **E** Strategy: expand a node that you think is closest to a goal state
	- Heuristic: estimate of distance to nearest goal for each state

- A common case:
	- Best-first takes you straight to the (wrong) goal

■ Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)] [Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

 \mathbf{I}

Combining UCS and Greedy

- Uniform-cost orders by path cost, or *backward cost* g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)

A* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

A heuristic *h* is *admissible* (optimistic) if:

 $0 \leq h(n) \leq h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

■ Examples:

■ Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- \blacksquare h is admissible

Claim:

■ A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
	- 1. f(n) is less or equal to f(A)

… \boldsymbol{n} \boldsymbol{B} $f(n) = g(n) + h(n)$ Definition of f-cost $f(n) \leq g(A)$ Admissibility of h $g(A) = f(A)$ $h = 0$ at a goal

Optimality of A* Tree Search: Blocking

Proof:

- \blacksquare Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
	- 1. $f(n)$ is less or equal to $f(A)$
	- 2. f(A) is less than f(B)

… \boldsymbol{n} \overline{B}

 $g(A) < g(B)$ $f(A) < f(B)$

B is suboptimal

 $h = 0$ at a goal

Optimality of A* Tree Search: Blocking

…

 $f(n) \leq f(A) < f(B)$

 $\bm B$

 \boldsymbol{n}

 \overline{A}

Proof:

- \blacksquare Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
	- 1. $f(n)$ is less or equal to $f(A)$
	- 2. f(A) is less than f(B)
	- 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

Properties of A*

Properties of A*

UCS vs A* Contours

■ Uniform-cost expands equally in all "directions"

 A^* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) - A*

Video of Demo Contours (Pacman Small Maze) - A*

Comparison

Greedy

Uniform Cost

A* Applications

A* Applications

- Video games
- Pathing / routing problems
- **Resource planning problems**
- Robot motion planning
- **Language analysis**
- Machine translation
- **Speech recognition**

…

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) - UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

8/30/2012

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

■ Inadmissible heuristics are often useful too

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- **What should the costs be?**

8 Puzzle I

- **Heuristic: Number of tiles misplaced**
- Why is it admissible?
- $h(start) = 8$
- This is a *relaxed-problem* heuristic

Start State **Goal State**

Statistics from Andrew Moore

8 Puzzle II

- **What if we had an easier 8-puzzle where** any tile could slide any direction at any time, ignoring other tiles?
- Total *Manhattan* distance
- Why is it admissible?
- $h(start) = 3 + 1 + 2 + ... = 18$

Start State **Goal State**

8 Puzzle III

- How about using the *actual cost* as a heuristic?
	- Would it be admissible?
	- Would we save on nodes expanded?
	- What's wrong with it?

- With A^{*}: a trade-off between quality of estimate and work per node
	- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

Dominance: $h_a \geq h_c$ if

 $\forall n : h_a(n) > h_c(n)$

- Heuristics form a semi-lattice:
	- Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- **Trivial heuristics**
	- Bottom of lattice is the zero heuristic (what does this give us?)
	- Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

■ Failure to detect repeated states can cause exponentially more work.

Graph Search

■ In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- I Idea: never expand a state twice
- How to implement:
	- Tree search + set of expanded states ("reached set")
	- Expand the search tree node-by-node, but...
	- Before expanding a node, check if the state is in the reached set
		- If in reached set, check the associated cost vs. the new cost
		- \blacksquare Expand if new cost is lower
		- Skip if new cost is higher
- **IMPORTER 19 IMPORTER 19 IN THE PROTE THE PROTE:** Integration of a list **name is the readily of the list name is the list**
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Importance of tracking state cost in closed set

Optimality of A* Graph Search

A*: Summary

A*: Summary

- A^{*} uses both backward costs and (estimates of) forward costs
- A^* is optimal with admissible heuristics
- **Heuristic design is key: often use relaxed problems**

Tree Search Pseudo-Code

```
function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)loop do
    if fringe is empty then return failure
    node \leftarrow REMOVE-FRONT(fringe)if GOAL-TEST(problem, STATE[node]) then return node
    for child-node in EXPAND(STATE[node], problem) do
        fringe \leftarrow \text{INSERT}(child-node, fringe)end
\bold{end}
```
Graph Search Pseudo-Code

```
function A<sup>*</sup>-GRAPH-SEARCH(problem, frontier) return a solution or failure
reached \leftarrow an empty dict mapping nodes to the cost to each one
frontier← INSERT((MAKE-NODE(INITIAL-STATE[problem]),0), frontier)
while not IS-EMPTY(frontier) do
    node, node.CostToNode \leftarrow POP(frontier)if problem.IS-GOAL(node.STATE) then return node
    end if
    if node. STATE is not in reached or reached [node. STATE] > node. CostToNode then
       reached[node. STATE] = node.CostToNodefor each child-node in EXPAND(problem, node) do
           frontier \leftarrow INSERT((child-node, child-node, COST + CostToNode), frontier)
       end for
    end if
end while
return failure
```
Consistency of Heuristics*

- Main idea: estimated heuristic costs \leq actual costs
	- Admissibility: heuristic cost \le actual cost to goal

$h(A) \leq$ actual cost from A to G

- Consistency: heuristic "arc" cost \le actual cost for each arc $h(A) - h(C) \leq \text{cost}(A \text{ to } C)$
- Consequences of consistency:
	- The f value along a path never decreases

 $h(A) \le$ cost(A to C) + h(C)

 $f(A) = g(A) + h(A) \le g(A) + \text{cost}(A \text{ to } C) + h(C) = f(C)$

 \blacksquare A* graph search is optimal

Only Single State Expansion Needed with Consistent Heuristic*

- Sketch: consider what A^* does with a consistent heuristic:
	- Fact 1: In tree search, A^* expands nodes in increasing total f value (f-contours)
	- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
	- Result: A^* graph search is optimal

First Time State Expansion is Cheapest with Consistent Heuristic*

■ Consider what A^{*} does:

- Expands nodes in increasing total f value (f-contours) Reminder: $f(n) = g(n) + h(n) = cost to n + heuristic$
- Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?

First Time State Expansion is Cheapest with Consistent Heuristic*

Proof:

- New possible problem: some *n* on path to G^{*} isn't in queue when we need it, because some worse *n'* for the same state dequeued and expanded first (disaster!)
- Take the highest such *n* in tree
- Let *p* be the ancestor of *n* that was on the queue when *n*' was popped
- *f(p) < f(n)* because of consistency
- *f(n) < f(n')* because *n'* is suboptimal
- *p* would have been expanded before *n*'
- Contradiction!

